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ABSTRACT

Among compliant platforms, the tension leg platform (TLP) is a hybrid structure
which is generally used for deep water oil exploration. With respect to the horizontal
degrees of freedom, it is compliant and behaves like a floating structure moored by
vertical tubular members or “tethers”. These tethers are pretensioned due to the excess
buoyancy of the platform, whereas with respect to the vertical degrees of freedom, it is
stiff and resembles a fixed structure and is not allowed to float freely.

Dynamic analysis of squared and triangular TLP models under regular waves is
presented, considering the coupling between surge, sway, heave, roll, pitch and yaw
degrees of freedom. The analysis considers various nonlinearities produced due to
change in the tether tension and nonlinear hydrodynamic drag force. The wave forces on
the elements of the structure are calculated using Airy’s wave theory with Chakrabarti
(1971) approaches and Morison’s equation, ignoring the diffraction effects. The
nonlinear equation of motion is solved in the time domain using Newmark’s beta
integration scheme.

Numerical studies are carried out in the time domain to examine the effect of
change of wave parameters (wave height and wave period) and coupling effect in
dynamic response of a square and a triangular TLP under a unidirectional surge wave
force. Also, Numerical studies are conducted to compare the coupled response of a
triangular TLP with that of a squared TLP and the effects of different parameters that
influence these responses are then investigated. Computer MATLAB program is
developed in this work for nonlinear dynamic analysis for both triangle and squared TLP.
The program is capable of solving large displacement problem dynamically in the time

domain.
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Chapter 1

INTRODUCTION

1.1 Introduction

A significant part of the world oil and natural gas reserves lies beneath the sea bed.
The drilling and production operation to exploit this offshore oil and gas supplies is
generally done from offshore platforms.

In 1947, the first steel platforms were installed for offshore in the Gulf of Mexico,
in 20 ft (6 m) of water. The structures were supported by a large number of small piles,
driven at varying depths and directions. In 1955, a platform was constructed in
approximately 100 ft (30.5 m) of water. The maximum water depth for offshore
platforms construction was extended to 225 ft (68.6 m) by 1965 and to 474 ft (144.5 m)
by 1975. In 1975, the Hondo platform was installed by Exxon in 850 ft (259 m) of water
in the Santa Barbara channel of California. This was followed in 1978 by Shell's Cognac
platform in the Mississippi Canyon area in the Gulf of Mexico. Since then several
offshore platforms were installed in the Gulf of Mexico in water depths greater than 900
ft (274 m).

It is expected that pile-supported platforms will be limited to a maximum water
depth of 1200-1500 ft (366-457 m), primarily owing to the cost of fabrication and certain
installation constraints. However, new types of platforms such as guyed towers and
tension leg platforms, which are designed to move with forces applied by wind, wave
and current, rather than rigidly resist them, offer promise of extending platform
capability significantly.

The first guyed tower, used as a drilling and production platform, Lena, was
installed by Exxon in 1000 ft (305 m) of water in the Gulf of Mexico in 1983. It is a
slender, bottom supported tower laterally braced by cable stays. This type of structures is
cost effective in 2000-2500 ft (609.9-762 m) of water.

The first tension leg platform used as a drilling and production platform was
installed by Conoco in 485 ft (147.8 m) of water in the North Sea in 1984. This structure



is a floating platform supported by submerged buoyant members and held in place by
vertical moorings, making the platform less sensitive to water depths. It is believed that
this type of platform can be cost effective in water depths exceeding 3000 ft (914.4 m).
Until 1986 over 3500 platform structures were standing in the offshore waters of
more than 35 countries. Although, most of these platforms have successfully withstood
the forces of nature, there have been major damages and some catastrophic failures. Off
the Louisiana coast alone, in the two-year period between 1957 and 1959, there was an
estimated damage of about 200 million dollars in Losses of 10 drilling, production and
pipeline facilities. These resulted from two major hurricanes, the Hilda and Betsy. In
1980 the Alexander Kielland, a serni- submersible rig, failed and sank in the Norwegian
sector of North Sea, killing the entire crew of 123 on board. Another accident involving
the floating platform, Ocean Ranger killed all the crew on board in 1982. These accidents
reflect inadequacy in the design and analysis or in the operational procedures adopted.
The rules for the design and analysis have been continually modified to reflect increased
understanding of the situation. However, there are several areas that still require more
understanding and need more reliable analytical models. The assessment of
hydrodynamic loads is one such area. These loads result primarily from the effects of
water currents and wave actions. The effect of current is relatively easy to assess.
However, the action of waves is significantly more complex, and difficult to analyze. The
difficulty lies both in modeling the wave motion itself, and in accounting for the irregular

nature of the waves in a real ocean.

1.2 Platform Types

Offshore platforms consist broadly of two components: (1) facilities for drilling
and production operations, often called topsides, and (2) the supporting structure and its
foundation. The topsides define the function of the platform. Included in the topside plant
are the drilling rigs and associated equipment, oil and/or gas-processing equipment,
transportation pumps and/or compressors, utilities and living quarters. Most major
platforms also have a helideck for helicopters. The second component of an offshore

platform, and the one that defines its type, is the supporting structure. Such structures



must secure the topside facilities against environmental loads, providing safe and
protected area for equipment and personnel to work.

The arrangement of structures and imployment of production facilities at a specific
location are influenced by reservoir capacity, production rate, field size, field shape,
environmental conditions, and water depth. Other factors affecting the selection of an
offshore platform are availability of construction materials, proximity and capability of
fabrication facilities, availability of installation equipment, and equipment considerations
such as capital cost, time to start up, and operating and maintenance costs.

Platform types are classified in two groups according to their function and

structural supports as:

1.2.1 Platform Function
Because the platform supports the operating function for which it is required, the

function dictates the basic configuration of a platform.

1.2.1.1 Drilling Platforms

Structures that provide lateral support to one or more wells drilled with a mobile
drilling rig are normally referred to as well protector platforms. These are undoubtedly
the most common platforms in service today. Generally found in water depths less than
150 ft (45.7 m), these structures are small, often straight-sided, and normally sized to fit
within the drilling slot of a submersible or jack-up drilling rig.

There are usually three or four pile structures with minimum size decks, they
provide only minimum production facilities, if any, and their wells are most frequently

connected by pipe lines to nearby production facilities.

1.2.1.2 Production Platforms

Some owners prefer to separate drilling operations from production operations
because of safety considerations. The production platform is connected by bridge or
pipeline to the drilling platform.



1.2.1.3 Self-Contained Drilling and Production Platforms

Many structures are designed to serve the combined functions of drilling platforms
and production platforms, these structures contain the wells and all the required drilling
equipment and supplies, and provide the required space for production facilities. The
standard self-contained platform is typically a two-deck, eight-pile, and template-type
structure with provisions for 12-24 wells. The drilling rig is generally installed on the
upper deck, and the basic production facilities are placed on the lower deck, separated
from the wellhead area by a firewall.

1.3 Platform Structural Types

Offshore platforms are usually divided into two general categories (Table 1.1),
(Figure 1.1), fixed and compliant platforms. Fixed types are traditional structures, extend
to the seabed and remain in place by their weight or by piles driven into the soil, in the
sense that its deformation under lateral loads is small, but it is located into the sea water.
Unlike fixed, compliant platforms are more responsive to external effects and their
movements are controlled by mooring systems. They are designed to move under lateral
forces, so that the effects of these forces are mitigated. Compliant platforms are used in
deep water, where the stiffness of a fixed platform decreases while its cost increases, and
they are the only technical solution in very deep water (>500 m).

The increase in cost of fixed offshore structures with depth of water encouraged the
development of compliant- type structures. The key idea behind their installation is the
minimization of the resistance of the structure to environmental loads by making the

structure flexible.



Figure 1.1:

1,2) Conventional fixed platforms; 3) compliant tower; 4,5) Vertically

moored tension leg and mini-tension leg platform; 6) Spar; 7,8) Semi-submersibles; 9)

Floating production, storage, and offloading facility; 10) Sub-sea completion and tie-

back to host facility.(www.mms.gov)

Table 1.1: Different types of offshore structures.

Classification Type Function Control mooring
. Steel jacket -Steel tower .
Fixed offshore platform ] . production -
-Steel gravity - Concrete gravity
Free standing tower o
. . Anchor wire pipe
Compliant offshore platform -Guyed tower - Spar tower production eth
ethers
-Tension leg platform(TLP)
) Drilling ship - Jack up Exploration and )
Mobile offshore platform Wire DP-legs

-Semi submersible

drilling
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1.3.1 Fixed Offshore Platforms
1.3.1.1 Steel Jacket

This is a space frame that extends from the sea bottom to above the water surface.
Piles are driven through the legs of the jacket into the sea floor (Figurel.2). These
transfer vertical loads to the soil and fix the structure in place against lateral loads from
wind, Waves, currents and collisions with ships or ice bergs. The bending stiffness of the
piles contributes to the lateral stiffness of the structure and thus they are rigidly
connected to the structure and are placed as far away from each other as possible. Steel
jackets are normally used in shallow to moderate deep waters (from 20 to 100 m), but
they have been used up to 500 m of water. Their natural period ranges from 1 to 5
seconds. The natural period of the jacket type structure increases with the increase in
water depth until it becomes close to the period of the peak wave energy which leads to a

large dynamic magnification.

1.3.1.2 Steel Tower

It is a large jacket where the piles cannot be inserted in the legs mainly for
economical reasons (Figurel.3). In fact, too long piles are too expensive. So, when the
platform is located in deep waters, the jacket becomes very heavy and the piles cannot be
as long as the legs. They become skirt piles inserted in sleeves around the outside of the
legs. In this way, the legs are plugged and normally sufficient to ensure resistance of the

buoyancy. This is very convenient from both economical and construction aspects.

1.3.1.3 Steel gravity platforms

This type of structure is rarely used. It uses its own weight to counter the lateral
actions due to wind and waves that tend to overturn the platform, the weight is used as a
stabilizing force (Figurel.4). The real reason for using gravity platforms is the nature of
the soil, when it is of solid rock, it is impossible to drive piles into it, so the gravity
solution is the only possible one. Normally, gravity platforms are concrete platforms, but
in some cases a steel solution can be adopted, in relation with several factors, mainly
economic considerations. Normally, the structure has a certain number of large tanks,

flooded by water or by crude oil, to ballast the platform and provide the necessary weight



to counter overturning lateral forces. An important feature of all the gravity platforms is

that they can be removed for demobilization or re-use.

1.3.1.4 Concrete Gravity Platforms

They are the hugest and most impressive structures ever built. In this platform, the
steel structure supporting the deck is totally or partially replaced by a concrete structure
of large dimensions (Figurel.5). It consists of cluster of oil storage tanks surrounding
hollow, tapered concrete legs that extend above the water line to support a steel deck.
Concrete gravity platforms are used when some particular circumstances are present:

a. Economical factors: in some cases, the construction of a very large
concrete structure can be cheaper than the construction of a steel structure;

b. Ecological factors: a concrete platform can be very huge, so as to
concentrate onboard some industrial treatments of the crude and to allow a
great stocking capacity in the ballast cells;

c. Construction conditions: the pile driving operation for a steel jacket needs
usually 5 to 10 days; in the North Sea it is rare to have such a period of
fine weather; the installation in the oil field of a concrete gravity platform,
complete with its deck, requires a shorter period (1 to 2 days);

d. Decommissioning aspects: concrete gravity platforms can be
decommissioned and eventually re-used,;

e. Soil conditions: when the soil is made of rock it is impossible to drive
piles into it: the gravity solution is then the only one possible;

f. Geographical conditions: the presence of calm and deep waters not far
from the oil field is an important factor for the construction phases.

These structures can reach a height of 400 m and weigh more than 800000 ton.



1.3.2 Compliant Offshore Platforms
1.3.2.1 Free Standing Towers

They are classical towers but so slender that their structural behavior is similar to
that of a compliant structure with large sway displacements and high oscillating period
(Figurel.6).

1.3.2.2 Guyed Towers

It consists of a uniform cross section held by several guy lines (anchor cables)
supported by clump weights resting on the sea floor (Figurel.7). Under normal operating
loads, the clump weights remain on the sea floor forming a mooring system. Under sever
environmental loads, the clump weights are lifted off the sea floor. Therefore, the tower
acts as pinned tower at its base and absorbs the loads by swaying back and forth without
overloading the guy lines. Guyed tower platforms are used for water depth of about 660

m.

1.3.2.3 Spar Towers

These platforms are composed of a large steel tube as substructure directly
supporting the deck and topsides. The tube is ballasted so as its floating stable
equilibrium position is vertical (including topsides), and moored by tensioned risers and
by mooring lines (catenaries). On the lateral surface of the large vertical cylinder there

are helicoids, installed to counter vortex-shedding.

1.3.2.4 Tension Leg Platforms (TLP)

The TLP is basically a floating structure moored by vertical tubular member, or
"tethers". These tethers are pretensioned due to the excess buoyancy of the platform. As,
the platform translates horizontally, the horizontal component of the pretension in the
tethers tends to force the platform back to its original position (Figurel.8). The TLP is
compliant in horizontal plane, but quite rigid in the vertical direction. The TLP has a six
degree of freedom, shown in Figure 1.11. The concept of TLP has been in existence since
the early 1970's.



A TLP is composed of 4 principal parts: the foundation template, the tethers, the
hull and the deck. Some TLPs (e. g. Heidrun) have a concrete hull. TLPs are very large
structures, able to host great payloads. So, they are used for great fields and can host
some refining processes and have a good storage capacity TLP can be used from 150 m
of water depth on, and theoretically there is no limit of water depth for their use. The
restoring force is given by extra buoyancy; this is obtained deballasting the TLP hull
once the tethers installed. TLPs can be reused.

The long periods of vibration associated with the compliant structures prevents
dynamic amplification of the response due to first order waves, since there is little or no
energy associated with the wave forces for long periods. While these long periods of
vibration remove any concern associated with dynamic amplification of first order wave
loads, wind loads and second order non-linear wave loads can be of importance.

Most of the energy associated with wind loading occurs at periods of about 40
seconds and longer, and as a result, dynamic amplification of the response due to wind
loads may be of prime importance in estimating the response of compliant structure to
environmental loads. The cost for other offshore structures will rise more rapidly than
that of TLP in deep-water reservoirs. The TLP is essentially advantageous for the
following reasons:

1. It attracts a lesser impact of the wave loading due to its compliant nature
and hence can operate even in rough sea.

2. The natural frequencies in the main or soft degrees of freedom (surge,
sway and yaw) are well below the wave frequencies, thus avoiding the
occurrence of resonance and reducing the horizontal motion and hence
loading on the tether platform system.

3. It is less expensive than the bottom-supported structures, especially in
deep seas.

4. 1t can be easily dismantled, installed and transported according to site
requirements. Where, the change in the water depth essentially requires a
change in the tether length.

5. It is much safer in a seismically active zone compared with any other

fixed platform.



6. Because of the restrained vertical motion of the TLP, it is quite convenient
to monitor and maintain the risers, oil wells and tethers.

7. A particularly attractive feature of the TLP is the ability to shift any
resonance outside the frequency region of the active wave energy.

1.3.3 Mobile Offshore Platforms
1.3.3.1 Drilling Ships

Like all the mobile systems, drilling ships are used mostly for the drilling phase,
but they can be used, at least temporarily, also as Floating Production System (FPS). A
drilling ship is, as its name indicates, a common ship equipped with a drilling system (a
derrick tower) (Figurel.9). It is maintained in its position by a system of mooring

catenaries, eventually assisted by servo-motors and GPS positioning.

1.3.3.2 Semi-Submersibles

As their name indicates, these are special ships, normally composed of two
pontoons, some columns and a deck. The deck is equipped for all the drilling operations.
A semi-submersible is a complete platform that can navigate as it is furnished of motors.
Once in place, its positioning is provided by a system of catenaries normally controlled

by a GPS system. Recently a concrete semi-submersible has been constructed.

1.3.3.4 Jack-Ups

These are special mobile platforms, normally used for the drilling operations
(Figurel.10). They are triangular barges, completely equipped for the drilling operations
and disposing of three or four truss legs. These legs can be lifted or lowered by motors.
When the legs are lifted, the jack-up can navigate just as a common ship. Once arrived on
the field, the jack-up lowers the legs so as to be fixed in the drilling place and it lifts

itself at the right height above the sea level.
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Figure 1.2: The scheme of steel jacket platform (www.mms.gov)
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Figure 1.3: The scheme of steel tower platform (www.mms.gov)
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Figure 1.4: The scheme of steel gravity platform (www.paroscrennc.com)

Figure 1.5: The scheme of concrete gravity platform (www.ogp.org.uk)
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Figure 1.6: The scheme of free standing tower (www.offshore-technology.gov)
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Figure 1.7: The scheme of guyed tower (www.offshore-technology.gov)
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Figure 1.8: The scheme of tension leg platform
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Figure 1.9: The scheme of drilling ships (www.offshore-technology.gov)
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Figure 1.10: The scheme of jack-ups
(http//community.webshots.com/album/126570186zwafus)
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Figure 1.11: Six degree of freedom of offshore structure.

1.4 Literature Review

Since the original concept of the TLP put forward. Most of the literature available
is on conventional square (four-legged) TLPs. Paulling and Horton, 1970, reported a
method of predicting the platform motions and tether forces due to regular waves using a
linearized hydrodynamic synthesis technique. Each member was assumed to be
cylindrical in shape with cross-sectional dimensions small in comparison to both the
length of the cylinder and the wave length.

Also, a number of studies has been made on the dynamic behavior of TLP
platforms under both regular and random waves (Taudin, 1978; Denis and Heaf, 1979;
Tan and De Boom, 1983). The majority of these studies deal with the two dimensional
behavior of the platform. The hydrodynamic interactions between adjacent or
intersecting members were neglected. The drag term was linearized and the free-surface
effect was neglected. The results agreed well with experimental model results. The
motions and tensions due to regular waves were shown to vary in a linear fashion with
wave amplitude.

Angelides et al., 1982, considered the influence of hull geometry, force
coefficients, water depth, pre-tension and tether stiffness on the dynamic responses of the
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TLP. The floating part of the TLP was modeled as a rigid body with six degrees of
freedom. The tethers were represented by linear axial springs. Wave forces were
evaluated using a modified Morison equation on the displaced position of the structure
considering the effect of the free sea surface variation.

Faltinsen et al., 1982, developed a comprehensive theoretical model for the
behavior of a TLP and verified such model using test program. The basic outline of the
model included:

(i) The velocity potential solution for first- and second-order hydrodynamics,
except for the slender members which were modeled with Morison’s
equation,

(if) Morison’s theory and Newman’s approximation to calculate drift forces,

(iii)The large deflection three-dimensional finite element theory with forces from
Morison’s equation which was used for the tethers,

(iv) The short-crestedness of waves, and

(v) The wind and current. The origin for the Mathieu-type instabilities was the
presence of a constant plus a time-dependent restoring force for surge, sway
and yaw. The amplitudes of oscillations due to the Mathieu-type instabilities
depended on the damping in the system and the relative importance of the
time-dependent restoring term compared to the constant restoring term.

Lyons et al., 1983, presented comparisons between the results of hydrodynamic
analyses and two sets of large-scale model test results for the wave-induced motion
responses of TLPs. The results of analyses and tests showed good agreement for surge
motions although discrepancies were observed for the tether tension responses at certain
wave frequencies. Linear wave theory was used and hydrodynamic interference between
members was neglected. The nonlinear damping was linearized by assuming an effective
linear damping, which would dissipate the same amount of energy at resonance as the
nonlinear damping.

Teigen and Navig, 1983, presented the response of a TLP in both long-crested and
short-crested waves through model tests. It was concluded that the low-frequency part of

the horizontal response looked enlarged in tests carried out in long-crested seas,
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compared to tests carried out in short-crested seas, irrespective of the actual shape of the
directional distribution.

Few investigations, however considered all the six degrees of freedom of the
platform in describing its dynamic behavior (Morgan and Malaeb 1983; Chandrasekaran
and Roy 2005). They presented phase space studies of offshore structures subjected to
nonlinear dynamic loading through Poincare maps for certain hydrodynamic parameters.

Morgan and Malaeb, 1983, investigated the dynamic response of TLPs using a
deterministic analysis. The analysis was based on coupled nonlinear stiffness coefficients
and closed-form inertia and drag-forcing functions using the Morison equation. The time
histories of motions were presented for regular wave excitations. The nonlinear effects
considered in the analysis were stiffness nonlinearity arising from coupling of various
degrees of freedom, large structural displacements and hydrodynamic drag force
nonlinearity arising from the square of the velocity terms. It was reported that stiffness
coupling could significantly affect the behavior of the structure and the strongest
coupling found to exist between heave and surge or sway.

Spanos and Agarwal, 1984, used a single degree-of-freedom model of a TLP and
calculated wave forces at the structure’s displaced position using the Morison equation. It
was shown that by numerically integrating the equation of motion, the calculation of
wave forces, on the displaced position of the structure, introduces a steady offset
component in the structural response for either deterministically or stochastically
described wave fields. The formulation did not involve any velocity-squared type of
terms, and yet an offset component was found to be present.

Vickery, 1988, studied the importance of wind load on TLP through using different
two numerical models and through an experimental scale model study carried out in a
wind — wave flume. The numerical models included a full diffraction analysis and effect
of the second — order, non-linear wave drift force.

Bhattacharjee, 1990, studied the applicability of the state space method for
modeling idealized three degree of freedom of TLP. Jain, 1990, investigated the relative
importance of different types of nonlinearities on the dynamic response of TLP and
focused on the nonlinear effect of evaluating the wave forces up to the free surface using

different approximation method, and TLP hull model with time varying tendon forces is
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subjected to regular wave with and without current, the effect on calculating the wave
kinematics up to mean sea level or up to the actual free surface making use of various
extrapolation or stretching techniques are discussed.

Ahmad et. al, 1990, studied the effect of the variable submergence on the
maximum tether tension force on TLP with change in wave incidence angle. The study
was carried out on coupled and uncoupled model. Jain et.al, 1990, studied the effect of
wind load on the dynamic response on TLP where the sea state was characterized by
Pierson-Moskowitz spectrum.

Kareem and Li, 1992, presented the response of a TLP to wave drift forces. The
wave drift forces on TLP are contributed to second- order potential and viscous wave
loading effect, the fluctuations in wave surface elevation, and the influence of platform's
displaced position on the wave excitation.

Li et al., 1993, presented the second — order double- frequency wave loads on ISSC
TLP in regular waves. Huse and Utnes, 1994, presented an experimental investigation
on hydrodynamic spring damping of TLP columns as influenced by the presence of
current and waves, and by the variation of radius of curvature at the lower edge of the
columns. They also compared the numerical calculations of the damping in calm water
with the experiment.

Mekha et. al, 1994, studied the nonlinear effect of evaluating the wave forces on a
TLP up to the wave-free surface. Several approximate methods were evaluated for
regular and irregular wave forces, with and without current, and compared to Stoke's
second-order wave theory. The tethers were treated as massless springs providing axial
and lateral stiffness at their connection with the hull.

Lee, 1994, presented the analytical solution of the coupling problem of a 2D tension
leg structure interacting with a monochromatic linear wave train. Fluid-induced drags,
including form drag and inertia drag, on linearly elastic tension legs had been considered
in the study. The nonlinear form drag was then replaced by a linear drag according to
Lorentz’s hypothesis of equivalent work. Analytical solutions showed that the inertia
drag on tension legs was negligible compared to that due to the evanescent waves caused

by the wave-structure interaction. However, the form drag on the legs altered the
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structural motion and, consequently, the wave field, especially when wave periods were
close to the structure’s resonant frequency.

Hahn, 1994, reported the effects of wave stretching on realistic representations of
the wave forces that act on offshore structures. The structures considered were modeled
as linear, cantilever, stick-like systems. The lateral responses of such systems to wave
forces, computed from water particle kinematics calculated by using the standard and
stretching approaches, were examined. The results showed that the effects of stretching
on the governing wave forces and the resulting structural responses were small,
indicating that they could be ignored in design practice. It was also shown that the action
of stretching could not materially influence the governing excitation and the
corresponding structural response.

Duggal and Niedzwecki, 1995, presented results from a large-scale experimental
study of the interaction of regular and random waves with a long, flexible cylinder,
exhibiting the dynamic characteristics of a TLP riser or tether in approximately 1000 m
of water depth. Regular wave conditions were chosen to provide a large range of
Keulegan—Carpenter numbers. Classification of the transverse response in regular waves
showed similarities with results obtained by previous investigators with oscillating flow
on rigid cylinders. For high Keulegan—Carpenter numbers, the response became more
irregular, with response at harmonics of the incident wave frequency and at several
natural frequencies of the cylinder.

Natvig and Vogel, 1995, focused on design of future TLPs should be on the aspects
of the platform geometry that affects tether loading and on the tether system itself. Their
experience with a four-legged TLP has shown that the indeterminate tether system
implies some very heavy cost items. The new concept of a three-legged TLP, which is
statically determinate, will not require complicated devices and the foundations can be
placed with larger tolerances without affecting tether behavior. The main aspect of three-
legged TLP is that all tethers share approximately the same loads despite weather
directions. With the near-equal load sharing of the three-legged TLP, the maximum load
level in one group is less, thus requiring less tether cross section material than that of a

four-legged TLP. Studies indicate that 12 tethers are feasible for a three-legged TLP
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whilst 16 would be required for a four-legged equivalent TLP. This is thus an important
area for savings since tethers are important cost items.

Munkejord, 1996, presented a conceptual analysis of the triangular TLP behavior
and then compared the results with data from model tests. The objective was to verify
maximum tether tension, maximum platform offset, and minimum air gap and tether
fatigue. Aker and Saga Petroleum developed the concept of a triangular TLP, which has
enabled significant savings in main steel for both hull and deck due to fewer main
element intersections and effective force distributions. Munkejord, 1996, summarized the
design features for the triangular TLP of Aker as a statically determinate system with
effective distribution of dynamic loads and fixed-length tethers. They stated that no
design cases where TLP sustained a maximum storm with one tether missing were
reported. No tether tension measurements required day-to-day operation and increased
tolerances for the position of the foundation and increased draught and heel tolerances.

Ahmad, 1996, investigated the coupled response of a TLP to random waves
characterized by a long-crested sea surface spectrum. The response analysis was based
on a simulation, which duly considered various nonlinear effects, such as relative
velocity squared drag force, variable added mass due to variable submergence with the
passage of waves and nonlinearity due to large excursion. It also accounted for variable
tension in tethers due to variable submergence, variable buoyancy and vertical wave
forces. The power spectral density function (PSDF) of the coupled heave and tether
tension showed the energy distribution with respect to frequencies and proved to be an
important informative tool for the preliminary design under the long-crested sea state.
Variable submergence was found to be a major source of nonlinearity enhancing the
surge and heave responses, which in turn introduced tether tension fluctuations.

Ahmad et.al, 1997, dynamic response studies of a tension leg platform (TLP) are
carried out in time domain to investigate the influence of non-linearities due to the
hydrodynamic drag force, variable cable tension, variable submergence, long excursions
and fluctuating wind together with the effect of coupling. The sea state is characterized
by Pierson Moskovitz spectrum while the fluctuating wind has been estimated using
Emil Simiu's wind spectrum which is meant for the compliant offshore structures.

Random wind and waves are modeled by Monte-Carlo simulation. Power spectral
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density functions (PSDF) are plotted to highlight the wind-induced dynamic responses of
the structure.

Jain, 1997, Dynamic response analysis of a TLP to deterministic first order wave
forces is presented, considering coupling between the degrees-of-freedom surge, sway,
heave, roll, pitch and yaw. The analysis considers nonlinearities produced due to changes
in cable tension and due to nonlinear hydrodynamic drag forces. The wave forces on the
elements of the pontoon structure are calculated using Airy's wave theory and Morison's
equation ignoring diffraction effects. The nonlinear equation of motion is solved in the
time domain by Newmark's beta integration scheme. The effects of different parameters
that influence the response of the TLP are then investigated. Like change in tether
tension force and damping ratio.

Lee and Wang, 2000, investigated the dynamic behavior of a TLP with a net-cage
system with a simplified two-dimensional modeling. They found that there is a close
relationship between the dynamic behavior of the platform and the net-cage features.

Chandrasekaran and Jain, 2002a; 2002b, investigated the structural response
behavior of the triangular TLP under several random sea wave loads and current loads in
both time and frequency domains. They studied the effect of coupling of stiffness
coefficients in the stiffness matrix and the effect of variable submergence of the
structure, due to varying water surface, on the structural response of the triangular TLP.

Tabeshpour et. al, 2004, studied the effect of added mass fluctuation on the heave
response of the TLP by using perturbation method both for discrete and continuous
models. Bhattachatya et. al, 2004, investigated coupled dynamic behavior of a mini TLP
giving special attention to hull-tether coupling.

Tabeshpour et. al, 2005, studied an analytical heave vibration of TLP with radiation
and scattering effects for undamped systems where the effect of structural and radiation
damping on the response of the structure was not considered so that the amplitude of the
heave motion was over estimated.

Ketabdari and Ardakani, 2005, developed a computer program to evaluate the
dynamic response of sea-star TLP to regular wave forces considering coupling between

different degrees of freedom.
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Tabeshpour et.al, 2006, nonlinear dynamic analysis of TLP is carried out in both
time and frequency domains. The time history of random wave is generated based on
Pierson-Moskowitz spectrum and acts on the structure in arbitrary direction. The
hydrodynamic forces are calculated using the modified Morison equation according to
Airy’s linear wave theory. The power spectral densities (PSDs) of displacements,
velocities and accelerations are calculated from nonlinear responses. The focus of the
paper is on the comprehensive interpretation of the responses of the structure related to
wave excitation and structural characteristics. As an example a case study is investigated
and numerical results are discussed.

Chandrasekaran et.al, 2007, focuses on the response analysis of triangular tension
leg platform (TLP) for different wave approach angles varying from 0 through 90 and its
influence on the coupled dynamic response of triangular TLPs. Chandrasekaran et.al,
2007b, Dynamic analysis of two triangular TLP models at water depths 1200 and 527.8m
is performed under regular waves along with impulse load acting at an angle of 45
degrees at the TLP column.

Kurian et. al, 2008a, developed a numerical study of the effect for determining the
dynamic responses of square TLPs subjected to regular and random wave, with available
theoretical and experimental results. Also, parametric studies have been made varying
parameters such as water depth, pretension, wave angle and position of center of gravity.
Kurian et. al, 2008b, developed a numerical study of the effect for determining the
dynamic responses of square and triangular TLPs subjected to random wave, with
available theoretical. They found that the responses of triangular TLP are much higher
than that of square TLP.

Joseph et.al, 2009, presents a new geometric configuration which could be a better
alternative to an existing configuration. A 3-column mini TLP is designed and its
platform-mooring coupled dynamic behavior is investigated and compared with an

existing 4-column mini TLP.

Y. M. Low, 2009, presents the formulation for the linearization in all six degrees-
of-freedom. Y. M. Low, 2010, developed a simple method for incorporating setdown in

the extreme response prediction of the airgap.
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Chan K. Yang, M. H. Kim, 2010, developed a numerical study of the transient
effect of tendon disconnection on global performance of an extended tension leg platform
(ETLP) during harsh environmental conditions of Gulf Of Mexico (GOM).

1.5 Aim of The study

In this study, dynamic analysis of squared and triangular model TLP to regular
waves is presented, considering the coupling between surge, sway, heave, roll, pitch and
yaw degrees of freedom. The analysis considers various nonlinearities produced due to
change in the tether tension and nonlinear hydrodynamic drag force. The wave forces on
the elements of the structure are calculated using Airy’s wave theory with Chakrabarti
(1971), approaches and Morison’s equation, ignoring the diffraction effects. The
nonlinear equation of motion is solved in the time domain using Newmark’s beta
integration scheme.

Numerical studies are carried out in the time domain to examine the effect of
change of wave parameters (wave height and wave period) and coupling effect on
dynamic response of a square and a triangular TLP under a unidirectional surge wave
force. Also, Numerical studies are conducted to compare the coupled response of a
triangular TLP with that of a squared TLP and the effects of different parameters that
influence these responses are then investigated. Computer MATLAB program is
developed in this work for nonlinear dynamic analysis for both triangle and squared TLP

which is capable of solving large displacement problem dynamically in the time domain.

1.6 Organization of the Present Study

This thesis consists of five chapters, after this introductory chapter, Chapter 2
presents a review of the basic equations of ocean wave propagation using linearized
gravity waves theory. It also includes a short review of the wave force representation
using Morison equation.

Chapter 3 describes the equations of motion being utilized in modeling tension leg

platform. Detailed drevision of the equations of squared and triangular tension leg
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platform are presented. The time integration scheme and the iterative solver of a system
of nonlinear equations using Newmark beta method are also provided.

Chapter 4 presents the studied model for both squared and triangular TLP. The
chapter also presents the obtained results for both of square and triangular TLPs. A
general view on all discussions and comments on the results are also presented in this
chapter.

Chapter 5 presents the conclusions of this thesis along with recommended future
work that may improve the applicability of the proposed method.
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Chapter 2

HYDRODYNAMIC LOADS

2.1 Introduction

The oceans have been an important part of our life for centuries, providing various
natural sources. They have also provided a continuous challenge to human by the
enormous forces contained in the waves. The waves in a severe storm may devastate
coastal villages and wreck ships, harbors, lighthouses and other important structures,
causing great damages. However, the same waves if harnessed properly can be
everlasting sources of energy. Attempts to fully understand the complex phenomena of
wave dynamics have been only partially successful. An accurate and improved analysis
of the highly irregular wave dynamics has become even more important with the
increased interest in natural offshore resources.

Ocean waves are the result of energy input into the ocean through natural
phenomena; primarily wind, through a complicated process in which the momentum of
the wind passing over the sea surface is transferred into wind waves, which develop with
time and space. This type of ocean wave is random in nature, and typically has period in
the range of 1 to 20 seconds. Large storm waves lengths around 600 meters. It is these
wind-generated waves which are of the most importance in the evaluation of the wave
loads on offshore structures. Although wind-generated waves are extremely certain,
simplification can be made so that the waves may be adequately described using
mathematical models. Also tidal forces and occasionally earthquakes, are free surface
phenomena, with a continual exchange of kinetic and potential energy as the fluid
particles oscillates about the mean level of fluid surface. The longest period waves are
those associated with tides, which are caused by the gravitational pull of the sun and the
moon. Tides have periods in the range of 12 to 24 hours, and height of the order of 10

meters.
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2.2 Theory of Linearized Gravity Waves

The motion of water waves is a complex phenomenon. Even in its most simple
form, after numerous simplifying assumptions, only an approximate solution can be
obtained (Airy, 1845, Dean and Dalrymple, 1984, Chakrabarti, 1987). In a strict sense,
water waves propagate in a viscous fluid medium, over an irregular bottom of varying
permeability. Fortunately, the main body of the fluid motion is nearly irrotationally,
except for a "thin boundary layer" near the bottom and the surface. Also, the water can be
considered incompressible for all practical purposes. These conditions imply that a
velocity potential exists for the main body of the fluid, and the objective of any wave
theory is to solve for this potential function.

The linear wave theory has been developed for long-crested waves. These are
deterministic waves that are propagating in one direction. And the wave crests are "long
enough” so that the fluid has no motion in the direction of the wave crest. Thus the flow
can be considered essentially two-dimensional, and restricted to the x-z plane of
propagation.

Since the flow is irrotational, a velocity potential @, can be defined and the velocity

component in the x and z directions are given as

op op (2.1)

Uu=— w=—-
X oz

The introduction of @ into the continuity equation for two-dimensional

incompressible flow is defined as

Vev=0 (2.2)
Or,

VeVp=0 (2.3)
Or,

A O (2.4)
—+—=0

X

The velocity potential @ pertaining to fluid region can be determined through 2-D

Laplace equation
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The governing equation for the gravity wave is obtained as a solution for @ in Eqn.

¢_

(2.5), subject to the appropriate boundary conditions. In the above, x denotes the positive
direction of wave propagation, z is positive upward, and the origin is fixed at the still
water level (SWL).

The sea bottom is assumed to be a rigid, impenetrable, horizontal boundary for the
mathematical derivation. This results in the condition of "no flow across the rigid
boundary".

o
o f 0 (2.6)

where, d is the local water depth.

=—d=>

The boundary condition at the sea surface is more complex in nature, and most text
present only the final equation, without explaining how it was arrived. The kinematic
free surface boundary condition states that a particle lying on the free surface at one
instant of time would continue to remain on the free surface. Mathematically it implies
that if the free surface of a wave is described by F(x,z,t) =z - 5 (X, t) =0, where # (x, t) is
the displacement of the free surface about the SWL (z = 0). Then,

M a:+u£+wf =0 (27)
Dt ot X OL | ¢ (x.2.t)=0
Or,
_ (2.8)
£+V.VF =0
X
Thus,
(2.9)

_5|:/&

VF[

F(x,zt)=0

Where,

(T 5]
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Where, n is the unit normal vector associated with the gradient function VF as

VF
VF| 2.11)

on substituting F(x,z,t) =z - n (x, t) = 0, on Eqn.(2.9) the kinematic boundary condition

n=

at the free surface is
z=n(xt)=v.n= X (2.12)

NERIG 7%

Where, the unit normal to the surface F(x, z) is given by

on /i

=TIk (2.13)
@+ L)

Thus,
T urw ()

J(1+(5’7/) J(1+(5’7/) (219

Carrying out the dot product this leads to

577577

z=n(x,t) =>w=—->=
7(x,1) X

(2.15)

Substituting (24 —w in the above, the kinematic free surface boundary condition can
oz

be represented as

& _on on
z=n(x,t) > —=—"+u—

e e S (2.16)
Which means that the velocity of the free surface equal to the particle velocity normal to
the free surface (kinematic condition).

The free surface, such as the water-air interface cannot support pressure variations,

neglecting surface tension effects. Across the interface thus, the free surface responds in
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order to maintain the uniformity in pressure. A complicating factor in the wave equation
is that the upper boundary is not known apriori, applying the Bernoulli equation with

Pn= constant is applied, on the free surface

z=n(x,t):%+%{(%) +(%j :|+%+gZ=C(t) (2.17)

Usually, the Pn /p term is absorbed in the constant C( t ), replacing the latter by a
new constant C1( t ), Thus, the problem is to find a solution to @ (x,z,t) which satisfies the

boundary condition specified by Eqns.(2.16) and Egns.(2.17) atz=1y

_ B L (@) (@),
z_n(x,t):&Jrz{(ng +(5zj }+gz 0 (2.18)

Which means that the pressure at the free surface is constant and equal to zero (i.e,
atmospheric pressure) (dynamic condition).

The difficulties associated with the free surface boundary conditions are that they
are non linear and are valid only at z=#, which is unknown. To linearize the boundary
conditions, it is assumed that the wave height is very small relative to wave length
(H<<<1) neglecting the nonlinear terms in Egn. (2.16) lead to,

on
u—=~0 (2.19)

And in Eqn. (2.17, 2.18) lead to,

(#)-(2)]

Next, the boundary conditions are applied at z = 0 instead of z= #. Simplifying the
boundary conditions to
From Egn. (2.16)

_o % _on
=025 " a (2.21)
and from Eqn. (2.18)

2.22
z:O:%Jrgn:Cl(t):O (2:22)
=n=-2()
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(2.23)
The solution to this simplified boundary value problem is (Dean and Dalrymple, 1984)

¢(X,Z’t):7zH cosh[k(z+d)]sin(kx_a)t) (2.24)
KT  cosh(kd)

So from Eqn. (2.23) and Egn. (2.24) lead to

n :%cos(kx—wt) (2.25)

Where, H is the wave height, T is the wave period, k=2x/ 4 is the wave number, 1 is the
Wave length, (w) =2n/T is the wave angular frequency, ¢ = w/k is the wave celerity. The

frequency and wave number are related for linear waves by the dispersion equation

w? = gk tanh(kd) (2.26)
Or,

g
¢’ =Ztanh(kd

” (kd) (2.27)

Where, g is the gravity acceleration.

The independent wave parameters are the local water depth, d, wave height, H, and
anyone of the following four parameters: w,k,A or T. Furthermore, waves become
unstable and break (Stokes, 1847) when either the crest angle exceeds 120 degrees or the
following ratio of wave height to length is exceeded:

% >0.142tanh(kd) (2.28)

Once the velocity potential @ is obtained the three fundamental unknowns of the
flow field, namely velocity, pressure and acceleration along with other parameters of
interest, may be evaluated as listed in Table (2.1).

Further, the dynamic pressure under a surface wave at a depth z below the SWL is
in table where the first term on the right hand side denotes the hydrostatic pressure due to
the water head up to the still water, and the second term represents the dynamic pressure
due to wave motion. The dynamic pressure term has the same sign as the hydrostatic
pressure under a trough and the opposite one under a crest it is interesting to note the
action of surface waves on a fully submerged. Neutrally buoyant body due to this
dynamic pressure effect it would experience a net downward force under a wave crest

and an upward force under the trough. This fact is used to advantage in the design of
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semisubmersibles. Where, the change in the vertical forces on the columns due to
variable submergence is canceled by the opposing force on the submerged hulls, at the
design wave frequency.

To summarize, the assumptions of the linear wave theory are stated. The amplitude
H/2 is small relative to the wave length A, the pressure contribution from the term (u? +
w?)/2g is negligible, the local water depth d is uniform, the fluid is considered inviscid
and irrotational. In addition, the fluid is incompressible and unstratified or homogeneous,
the deflection force associated with the earth's rotation, the Coriolis force is negligible.
Surface tension effects are negligible, the bottom is smooth and impermeable, and the sea
level atmospheric pressure can be considered uniform.

Dimensionless parameters are frequently used to characterize a wave train. The
wave height is expressed in terms of (H/gT?), the wave steepness H/ A or the relative
height H/d. the water depth expression in terms of depth parameters (d/gT?) or (kd) or the
relative depth d/ A, for steeper waves in shallow water the ursell number U=H 1 %/d® is
often used as Figure (2.2).

It is useful to note that depending upon the relative measure of water depth and
wave length two extreme conditions of shallow and deep water can be described. The
parameter (kd) specified the ranges over which certain approximations are applicable

which appears in the denominator for the velocity potential, is defined as

ekd + e—kd
COSh( kd ) = T (229)
By Taylor series expansion
2
ekd =1+kd+ (kg) 4o (230)
2
g =1_kd+(kd) Feeenns

Therefore, for small kd lead to

cosh(kd ) = 1+@ 2.31)

And for large kd the term e*? becomes quite small that lead to

kd

cosh(kd ) = 67 (2.32)
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The shallow and deep water ranges corresponded to kd<m/10 and kd>n
respectively, and over these ranges approximate expressions may be substituted for

hyperbolic functions used to obtain flow field velocities as show in Table (2.2)

Table 2.2: asymptotic forms of hyperbolic functions

functions kd<n/10 kd>r
Sinh(kd) Kd gkdr2
Cosh(kd) 1 gkdr2
Tanh(kd) kd 1

Substituting these into the last relation, we obtain the simplified expressions that

summarized in Table (2.1).

So we can divide the water depth to three categories as:
1) Shallow water waves: (1/25)> (d/A); 0.0025> d/gT?
2) Intermediate water waves: (1/25)< (d/ A)<(1/2); 0.0025< d/gT?<0.08
3) Deep water waves: (1/2) < (d/1); 0.08< d/gT?

It is not Uncommon (in engineering application) to use linear theory over a wider
range. Figure (2-2) shows the ranges of suitability for various theories.

As waves start to become large compared to their length, the second- order terms
present in Eqgn. (2.17) and Eqn. (2.18) become increasingly important. The inclusion of
these terms in a stockes-type perturbation solution indicates that for H/ A larger than
approximately 0.006 and H/d<0.03, the wave profile changes from the sinusoidal from
given in the linear solution. The Stokes waves tend to have relatively long shallow
troughs and sharper peaks. As H/ A becomes even larger, the waves finally break. This

breaking limit is reached when H/ A approaches.
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Figure 2.2: the ranges of suitability for various theories (Bhattachargee, S.,1990).
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2.3 Surface Elevation Modification

Similar to the velocity potential, the expression for the water particle kinematics
consists of the amplitude at the surface; the variation with depth given by attenuation in
the form of a hyperbolic function; and a factor dependent on time and position of' the
particle. For the extreme wave condition where the wave height is large, the effect of the
variable free surface elevation needs to be considered. As shown in Eqn. (2.24) the depth
COSh[k( z+d )] decays rapidly from still water level (MWL) to the sea floor and

cosh(kd
the wave kiner$1atic):s near the water surface have a significant importance on the total

Factor

wave force applied to the structure. To compute the hydrodynamic forces, the water
particle kinematics has to be known at all positions of the structure. Linear wave theory
however, can only evaluate the water particle kinematics up to the MSL to overcome this
limitation. Several extrapolation methods have been suggested to evaluate the water
particle kinematics between the MSL and the wave free surface. Some of the methods are
(Jain, 1997):

(a) Hyperbolic Extrapolation: This method, suggested by Hogben simply extends
the water particle kinematics above the MSL in a hyperbolic manner. This,
extrapolation has been proved to overestimate the forces on the structure and
to be very conservative.

(b) Linear Extrapolation: This method, used by Nwogu and Irani computes the
water particle kinematics beyond the MSL by expanding the expression in a
Taylor's series and neglecting second order and higher order terms. This
method also leads to an over estimation of the total force.

(c) Stretching methods: This is the most recommended method when the free surface
effect is to be taken in to account in the analysis. These methods shift the
water particle kinematics profile from the MSL to the free surface. Thus, the
water particle kinematics decays exponentially between the wave surface and
the sea bed. Meeler's approximation and Chakrabarti approximation have
been suggested. Wheeler, 1969, replaced the term (z+d) in the numerator of

hyperbolic extrapolation function by (z + d) d/ (d + n) so that the crest and
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trough have the same particle velocity as Eqn. (2.24). Chakrabati, 1971,

replaces the term d in the denominator of the hyperbolic function by d + 7).
(d) Uniform Extrapolation: This method, used by Eatoek, Taylor et. al, assumes that
the water particle kinematics in the crest region above the MSL are equal to

their corresponding values at MSL.

It is worth mentioning that Jain, 1997, showed that the Chakrabarti, 1971,
approximation is better than other approximations and its results are very close to

experimental values. Therefore, this approximation will be utilized in the current study.

A B C D
" T4 —
| R

L

Figure 2.3: the comparison of vertical distribution of horizontal water particle velocity
for (A) Airy which is limited to MWL, (B)Extrapolation of linear wave theory, (C)

Stretching of linear wave theory, and (D) Modified linear wave theory "Chakrabarti"
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2.4 Wave Force

There are basically two different approaches for evaluating wave loads on fixed
and floating structures:

1) Empirical formulae, relying heavily on experimental observation, physical
insight and dimensional analysis. Examples include the Morison equation
(by Morison et.al, 1950) and formulae for wave slamming, vortex shedding,
etc.

2) Theoretical methods, which solve the boundary value problem describing
flow around the structure. These methods are usually based on the classical
theory of potential flow. The wave diffraction method or potential theory
(by Hogben and Standing, 1975) falls into this category. It is sometimes
necessary to add empirical terms representing non-ideal fluid effects, such
as viscous drag.

The selection of the appropriate method of calculating wave loads is permanently
governed by the size of the structure as, compared to the length of the incident wave the
Morison equation technique is generally considered tube valid when the diameter of a
structural member (D), is small as compared to the length of the wave (1), the method
assumes that the kinematics of the undisturbed flow are not altered due to the presence of
the structure and is generally considered to be valid when D/ A is less than 0.2 as the
size of a structure, or any of its components, becomes large compared to the wave length
(i.e. D/ 4 greater than 0.2), the velocity and acceleration of the flow can not be considered
constant over a distance equal to cylinder diameter in this case the presence of the
structure begins to alter the incident flow field and the waves generally undergo
scattering (or diffraction). Thus rendering the Morison equation invalid, therefore making
it necessary to employ diffraction theory in order to determine the wave forces and the
total force is determined by integrating the pressure evaluated from the superposition of
the undisturbed pressure field and the pressure resulting from the disturbance of the flow
field.

39



2.4.1 Wave Force Regimes

Wave forces on structures are computed by a variety of methods. The choice of a
particular method depends on the dimension of the structure relative to the characteristic
dimensions of the wave.

The parameters used to define these regimes for force computation purposes are
cylinder diameter, D, peak to trough wave height, H, and the wave length, A.

For D/A > 1: Condition approximates pure reflection of the waves by the structure:

For D/A > 0.2; Diffraction forces need to be considered.

For D/4 <0.2: Morison equation is valid in this region.

For 0.5 < D/H <1: Inertia forces can be used to represent, the total force on the structure.
For example, the large diameter structures like the columns supporting the decks of
gravity type structures.

For 0.1 <D/H < 0.5: both inertia and drag force need to be considered.

For D/H = 0.2: Drag and inertia forces are comparable.

For D/H < 0.1: Drag forces can be used to represent the total force. An example being
Small diameter members like conductor tubes etc. Where, viscous effects provide the
primary force contributions.

It is also worth noting at this point that the ratio D/H can be related to D/J., based
on the limiting heights of breaking waves. Waves become unstable and break when H/2 >
1/7. Thus for stable waves, D/H > D/ in a strict sense, the concept of orbital width
should be used. Instead of the wave height for identifying the force regimes the orbital

width is defined as
ﬂ coshkd
2 sinhkd

W =2

cos(kx—at) = H (2.33)
tanh kd

Note that in deep water tanh (kd) —1, whereby W = H in the above Eqn. (2.33).

A very important assumption of Morison equation is that the waves are unaffected
by the presence of the structure. This is justified only in case of relatively small diameter
members. As indicated by the preceding relations, for members of larger diameters the
diffraction and reflection effects become increasingly important, and Morison equation

has to be replaced by diffraction theory that accounts for this (Chakrabarti, 1987).
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2.4.2 Morison Equation

A very convenient empirical method for predicting the hydrodynamic forces on
slender structural members has been proposed by Morison et. al, 1950, the formulation is
based on experimental studies of wave forces on a pile and is a heuristic approximation
of the measured forces by the assumption that the kinematics of the undisturbed flow in
the region near the structure do not change in the incident wave direction. This empirical
model is most appropriate for slender members, and accounts for the viscous as well as
the inertia forces in an unsteady flow. Originally formulated for predicting forces on a
rigid pile, the model is extensively used for evaluating wave and current forces on
various submerged structural elements of offshore platforms, according to this model the
total force on the structure can be considered to be the algebraic sum of a drag force and
an inertia force Figure (2.4).

The drag force represents the contributions from viscous effects to the total force
and attempts to incorporate the boundary layer and flow separation effects caused
primarily by flow separation downstream from the cylinder. It depends on the fluid
velocity in a quadratic manner, and linearly on the projected surface area. The drag force

per unit length of a cylinder is defined as

2.34

dF, :%PCdD|U|U ( )
and

U :u+(—d;Zch (2.35)

where, p is the fluid density, D is the diameter (or some characteristic dimension).
U, is the undisturbed fluid velocity u, and current velocity Uc if exist, and Cq is the drag
coefficient which is determined from experiments which the value of it ranges between
0.5 to 2.0 depending on the flow situation and surface roughness and commonly used
value for it is 1.0, the term UJ|U| is written in this form to ensure that the drag force
component is in the same direction as the velocity.

In the ocean, wave and current loading naturally occur simultaneously; current

direction need not coincide with wave direction and may vary with depth. The speed may
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also change with depth as shown in Egn. (2.35), to present a realistic description a profile
which may vary in both magnitude and direction with depth considered and also the
current velocity always takes about 10% wind velocity at a height of 10 m above the
water surface.

The inertia force represents the contributions due to fluid acceleration and is
present even under ideal fluid assumptions, and it is the force exerted by fluid while it
accelerates and decelerates as the fluid passes the structure and it is also the force
required to hold a rigid structure in a uniformly accelerated flow. The inertia force per
unit length is expressed as
dF, = pC,A S (2:39)

Where As is the cross-sectional area, the coefficient, Cr is the inertia coefficient
associated with the geometrical shape of the structure, and usually derived from
experiments and can be theoretically obtained only in some special cases which the value
of it ranges between 0.6 to 2.0 depending on the geometry of the member and commonly
used value for it is 2.0.

According to this model the total force on the structure is the vectorial sum of these
two forces. Thus, the total hydrodynamic force per unit length on a slender structural

member subjected to an unsteady flow of a real fluid around it is given by
dF =pCmAgZ—l:+%pCd DU (2.37)

Other underlying assumption in formulating the Morison equation is:

1) The equation is for unbroken surface waves.

2) The equation is for a single vertical cylindrical object such as a pile which
extends from the bottom upward above the wave crest.

3) The diameter of the pile is small compared to the wave height, wave length and
water depth.

4) Coefficient Crand Cq must be obtained experimentally.

5) In force calculation, u is taken as horizontal wave particle velocity and the

convective acceleration terms are often ignored, i. e., it is assumed that
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du au

TS (2.38)

The values of the velocity and acceleration in this Eqgn. (2.38) have to be known
before the force can be evaluated. For computing forces due to waves or currents the
velocity and acceleration in the flow field in the absence of the structural member is
usually substituted. The true values of this kinematics in the presence of the solid body
can be solved for only by considering the relatively complex fluid-Structure interaction
problem. This simplification implies that the structural member does not affect the flow
field significantly. This assumption is reasonably valid only for slender structural
members, and hence the restriction of this model to small diameter members. For
structural members of relatively larger dimension the diffraction and reflection effects
play an increasingly important role. An assessment of the situations under which the

different components play important roles are discussed in more detail in a following

section.
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Figure 2.4: Wave force on a vertical cylinder
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2.4.3 Modified Morison Equation

Morison equation was derived for rigid piles, and due consideration is required
when analyzing the force on moving structures, especially if the structure is very flexible
Figure (2.5). In a more sophisticated formulation the forces are considered to depend not
on the absolute velocity and acceleration of the water particles, but on their relative
magnitudes with respect to the structure of interest. The added mass effect and the
Froude Krylov force are direct consequences of this force. It depends on the fluid

acceleration and the cross-sectional area of the member. That is,

* :LCmAS(Z_l:‘ d(;(t. )}0.5/;0d DU -ddit(u _ddit)—(cm ~1)pA d;t. (2.39)

Where x represent the displacement of the moving structure and the dots represent

derivatives with respect to time. From Eqgn. (2.39) it is noticed that the first term results
from the fluid motion only and the second term is the added mass due to the movement
of the cylinder in the water where the term (Cn-1) is generally represented by Ca which is
called the added mass coefficient. The applicability of the model for rigid piles to the
case of a moving structure is an empirical extension of this model. The same coefficients
are used but in conjunction with the relative motions. Systematic experimental values of
the coefficients to cover the general case of a moving structure are not available, and the
above model is accepted by engineering community as a logical extension of the theory.

The drag force term in Morison Eqgn., can be simplified into a linear form using the
assumption of (Penzien, 1976, Patel, 1989) because of the complicated of the absolute
value integration as:

1

dFd :EcdpDc[U _UX]U _Ux

dz ~ %Cd oD, (VU )-(2u, )z (2.40)

Where |U| = Lj is time independent and for cylindrical section and equal to

N ke

o (2.41)
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2.4.4 Modified Morison Equation for Inclined Cylinder

If the cylinder is located between coordinates (X1, Y1, Z1) and (X2, Y2, Z>) relative
to principal platform axis, then direction cosines can be defined as follows (Figure 2.6)

c03a=% coslngz_[Yl COSJ/=_Zz_Zl

, (2.42)
The components of the normal velocity and acceleration vectors for a segment of
submerged portion of an arbitrarily inclined cylinder can be expressed in terms of the

direction cosines (Patel, 1989) as

u, =(u—x;)sin® o —(W—X; )coSs cos y (2.43)
u, =(u—x;)sin* B—(w—x; )cos Scos y (2.44)
u, =(w—x;)sin’ y —(u—x; )cos acos y (2.45)
u: =u’"sin® a — W’ CoS ’CoS y (2.46)

L SR} _ o
u; =u”sin® B —w"cos Scosy (2.47)
us =w'sin®y —u® cos acos y (2.48)
where, u, w and u’, w" are the horizontal and vertical water particle velocities and

accelerations respectively.
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Figure 2.6: Sketch of wave loading on an inclined cylinder
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Chapter 3

TLP DYNAMIC ANALYSIS

3.1 Introduction

TLPs have very long period of vibration associated with motions in the horizontal
plane, and resonant responses in these degrees of freedom are associated with second-
order nonlinear wave forces as well as wind load. The periods of vibration associated
with displacements in the vertical direction are much shorter than typical wave
frequencies, and resonant responses in these degrees of freedom could be excited by non-
linear wave forces. For example, the heave, pitch and roll natural periods are of the order
of 3 seconds, and the surge, sway and yaw are of order of 50 second or more. Typical
wave spectral peak are between 6 to 15 seconds. Thus, both groups of motion responses
fall outside the wave spectral period range, the former group at the lower end, and the
latter group on the upper end of the energy spectra plotted against wave period.
Consequently, direct resonances, a situation where damping effects control the response
are unlikely to occur. (Figure 3.1)

For compliant structures, the inertia forces are predominant when they are
dynamically excited. For such a situation, one has to perform rigorous dynamic analysis,
and there exist two possibilities. One can do the linear analysis which is cheap and easy,
but the major limitation to this is that one should be confident about the system being
linear or nearly linear, such that the nonlinear effects, if present, are negligible. In order
to incorporate the nonlinear phenomena, a nonlinear analysis has to be performed.
Nonlinear effects can not be easily included in frequency domain analysis but best
handled in the time domain analysis using Newmark's beta step-by-step numerical
integration technique. In this chapter both analytical solutions for rectangular TLP and
triangular TLP models will be carried out.
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3.1.1 Structural Idealization and Assumptions

The equation of motion of both of rectangular and triangular TLP model under a
regular wave is given as:
[MI{X™ }+[CHX I+ [KH{x}={F,(1)} 3.1)
Where
{x} Is the structural displacement vector,
{x} Is the structural velocity vector,
{x} Is the structural acceleration vector,
[M] Is the structure mass matrix,
[C] Is the structure damping matrix,
[K] Is the structure stiffness matrix, and
{Fo (1)} Is the hydrodynamic force vector

The mathematical model derived in this thesis based on that the platform and the
tethers are treated as a single system and the analysis is carried out for the six degrees of
freedom under different environmental loads where wave forces are estimated at the
instantaneous equilibrium position of the platform by Morison’s equation using Airy’s
linear wave theory, The effects of wave diffraction effects have been neglected and
sheltering for wave forces have also been neglected and wave force coefficients, Cq and
Cm, are the same for the pontoons and the columns and are independent of frequencies as
well as constant over the water depth.

The following assumptions were made in the analysis:

1. Initial pre-tension in all tethers is equal and remains unaltered over time. It is
quite large in comparison to the changes that occur during the life time of the
TLP. However, the total pre-tension changes with the motion of the TLP.

2. Change in pre-tension is calculated at each time step, and writing the equation of
equilibrium at that time step modifies the elements of the stiffness matrix.

3. The platform has been considered symmetrical along the surge axis.
Directionality of wave approach to the structure has been ignored in the analysis
and only a uni-directional wave train is considered.

4. The damping matrix has been assumed to be mass and stiffness proportional,

based on the initial values.
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The force on tethers (gravity, inertia, drag, hydrostatic and hydrodynamic forces)
has been neglected because of its small area and also the tether curvature is not
significant in motion, only the axial forces acting on tethers have been
considered.

Hydrodynamic forces on connecting members and mooring legs have been
neglected.

The wave, current and structure motions are assumed to occur in the same plane
and in the same direction, the interaction of wave and current has been ignored.
Integration of hydrodynamic inertia and drag forces are carried out up to the
actual level of submergence as suggested by Chakrabarti, 1971, when variable

submergence is considered.

3.1.2 Mathematical Model of TLP
3.1.2.1 Mass Matrix, [M]

The motion of a platform is described by the platform-fixed coordinate system

(Figure 3.2).
Global structure mass matrix [M] can be written in the following form

M 0 0 0 M -rL,M

0 M 0 -,M 0 rM

0 0 M rM  —rM 0
[M]= (3.2)

0 -rM LM J. =,

r,M 0 -rMm -3,  J,
-LrM ™M 0 -J;  —J,

Where;

M is the mass of the body,

r, is the location of the mass center with respect to the platform- fixed coordinate

system and equal zero if the fixed coordinate is the mass center sor, =r, =r, =0

Ji; 1s moments of inertia =J.(r,-2 +r2)dm

j; 1s products of inertia =J‘(ri r)dm

And Jjj is equal to zero if the fixed coordinates is the mass center
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The added mass, Ma, is due to the water surrounding the structural members and

arising from the modified Morison equation has been considered up to the mean sea level

(MSL) only when we calculate the damping and the natural time period. The fluctuating

component of added mass due to the variable submergence of the structure in water is

considered in the force vector depending upon whether the sea surface elevation is above

(or) below the MSL that is when the coupling effect take into account but when we

discuss the uncoupling effect we add the total added mass in the force vector. the added

mass will be
M all 0 MalS O MalS
0 M a22 IVla23 M a24 O
[Ma] — MaSl Ma32 Ma33 Ma34 Ma35
0 M ad2 M343 M ad4 O
M a51 0 M a53 0 Ma55
Mis Mg 0 0 0

Where, the one-half of the symmetrical added mass matrix coefficients are

M, (11) = j(pcaAs,in2 a)dL,
M, (2.2) = [ (pC,Asin® B)dL,

M, (1,3) =M, (31) = j —(pC,Acosacos y)dL

L

M, (3.2) =M, (23) = [~ (oC,Acos Bcos y)dL,

L

M,(15)=M,(51) =M, (LDZ - M, (L3)X,
M, (2,4) =M, (2,2)Z -M,(13)Y,

M, (33) = [ (oC,Asin’ y)dL,
M.(35)=M,(53)=M,(13)Z-M,(33)X,
M, (34)=M,(43)=M,(23)Z -M,(33)Y,

M,(55) =M, (L)X —2M,LI(ZX), + M, BIZ2 |
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Mz
M n26
0
0
0
Mge

(3.4)

(3.4.1)

(3.4.2)

(3.4.3)

(3.4.4)

(3.4.5)
(3.4.6)

(3.4.7)

(3.4.8)
(3.4.9)

(3.4.10)



M, (4,4) = M _(2,2)Y —2M, (2,3)(ZY),, + M, (3.3)Z2 (3.4.11)

M,(6,6) = M, (2,2)Y + M, (L) X2 (34.12)
M, (1L6) =M, (61) =—M, (L)Y (3.4.13)
M, (2,6) =M, (6,2) =—M_ (2,2)X (3.4.14)
Where,
2
A= D (3.4.15)
4
X=Xt Xe (3.4.16)
2
y =ty (3.4.17)
2
7-4%% (3.4.18)
2
I 2 2
X7 X{ + X13X2 + X, | (3.4.19)
— 2 2
Y2 = \A +Y1;2 +Y; (3.4.20)
— Z2+22,+7:
z2=4 13 27 %2 (3.4.21)
(2X). - 27X, + 222)(26+ ZX,+Z,X, » (3.4.22)
(2v). - 22N, +2Z.Y, +Z X, + 7Y, (3.4.23)

6
Where, every term of these matrices will be determined in the later section

according to the specific type of TLP.
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3.1.2.2 Structural Stiffness Matrix

A TLP is basically a floating structure held to the sea floor through pretensioned
cables. The pretension in the cables is a result of the excess buoyancy of the platform.
The stiffness of the platform is derived from a combination of hydrostatic restoring
forces and restoring forces due to the cables. Restoring force for motions in the
horizontal plane (surge, sway, and yaw) are the horizontal component of the pretension
in the cables (Figure 3.2), while restoring forces for motions in the vertical plane arise
primarily from the elastic properties of the cables, with a relatively small contribution
due to hydrostatic forces.

The coefficients, Kijj, of the stiffness matrix of the rectangle TLP are derived as the
reaction in the degree of freedom i due to unit displacement in the degree of freedom j,
keeping all other degrees of freedom restrained. The coefficients of the stiffness matrix
have nonlinear terms. Furthermore, the tether tension changes due to the motion of the

TLP in different degrees of freedom make the stiffness matrix response-dependent.

3.1.2.3 Structural Damping [C]

The damping matrix [C] is equal to
[C]= [cs] + [B] + [cH] + [cu] (3.5)
Where,
[cs] Is the structure damping mass matrix is assumed to be mass and restoring force
proportional,
[B] Is the radiation damping matrix and is neglected,
[cH] Is the hydrodynamic drag damping and is included in the force vector, and
[cw] Is the aerodynamic damping and is neglected in this thesis since wind effect is not
taken into account.

So the damping matrix is only equal to structural damping matrix. It can be written

in the following form (Chopra, 1995):

c- mﬁ%qﬁw]m (36
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Where; {¢n} and o, are the mode shapes and structure's natural frequencies, ¢, is the
structural damping ratio, C is the damping matrix, m is the total structure mass matrix
and M, is the corresponding element of the {g, |" [m{¢, }

This matrix is calculated based on the initial values of [K] and [M] depending on the
type of the platform.

3.1.2.4 Hydrodynamic Force Vector, {F (t)}

Water particle kinematics is evaluated using Airy’s linear wave theory. This
description assumes the wave form whose wave height, H, is small in comparison to its
wave length, L, and water depth, d. Knowing the water particle kinematics, the
hydrodynamic force vector is calculated in each degree of freedom. Only a uni-
directional wave train is considered in the surge direction. The force vector F (t) is given
as:

Fty={F, F, F, F, R, F,J (3.7)

The hydrodynamic force attracted by the members in the surge, sway and heave
degrees of freedom are computed and designated as F11, F21 and Fsi, respectively. The
moment of these forces about the x, y and z axes are designated as Fas1, Fs1 and Feu,
respectively taking anticlockwise moments negative.

Since the wave is unidirectional, there would be no force in the sway degree-of-
freedom F21 and hence there will be no moment in the roll degree of-freedom Fa;.
Because of the vertical water particle velocity and acceleration, the heave degree-of-
freedom would experience wave force Fs;. The force in the surge direction Fi1 on the
vertical members will cause moment in the pitch degree-of-freedom Fsi1. However, forces
in the surge degree-of-freedom are symmetrical about the x- axis (due to the symmetry of
the platform to the approaching wave) and there will be no net moment caused in the yaw
degree-of-freedom Fe:.

So due to a uni-directional wave train in the surge direction the values of

F21=F41=Fe1=0 but F11, F31, Fs1 have values that depend on type of TLP.
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3.2 Development of a Rectangle TLP model

3.2.1 Draft Evaluation
At the original equilibrium position (Figure 3.3), summation of forces in the

vertical direction gives:

W+T, =F, (3.8)
So;

W +(4T,)=F, (3.9)
And,

F; =0.25p9(4D;D, +2D;s, +2D’s, ) (3.10)

From Eqg. (3.11), we get:

[{W +T)/(0.25pm9)}-(2D}s, )-(2D}s, )]

Where, Fg is the total buoyancy force, W is the total weight of the platform in air, Tt is
the total instantaneous tension in the Tethers, T, is the initial pre-tension in the tether, p
is the mass density of sea water, D¢ is the diameter of TLP columns, Dy, is the diameter of
pontoon, Sa, Sp is the length of the pontoon between The inner edges of the columns in

the x, y direction respectively, and Dy is the draft.

3.2.2 Stiffness Matrix of the Rectangle TLP Configuration
As shown in section (3.1.2.2) the coefficients of the stiffness matrix [K] of a

rectangle TLP are:

K, 0 0 0 K O
0 K, 0 K, 0 0
[K] — K(;%l EBZ K033 E34 K35 K36 (312)
42 44
K, O 0 0 Kg O
0 0 0 0 0 K

And can be determined as
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3.2.2.1 Surge (1) Direction (Figure 3.4)
The coefficients of the first column of the restoring force matrix are found by
giving a unity x displacement in the x-direction (surge):
The increase in the initial pretension in each leg is given by:

AT,
Stress
E= = A 3.13
Strain AL (3.13)
L
Where; AT, = w (3.14)

AL = x> +1% -L (3.15)

Where, A is the cross-sectional area of the tether, E is Young’s Modulus of the tether, AT,
is the increase in the initial pre-tension due to the arbitrary displacement given in the
surge degree of freedom, L is the length of the tether, and x; is the arbitrary displacement
in the surge degree of freedom.

Equilibrium of forces in the surge direction gives

> Fx=4(To+A4T,)sind, =K, X, (3.16)
Where, J, is the angle between the initial and the displaced position of the tether for unit

displacement given in the surge direction.
L

. X
sinf, =—=—— , €053, =——— (3.17)
JXi+n JXi+L
Substitute (3.17) into (3.16)
A(T, + AT, )2t =K, X, (3.18)
X2+
A(T, +AT
= Kll = M (319)
JXF+L°
Through summation of the vertical forces, we get:
> Fy=K,, X, =4(T, + AT, )cos o, +W —F, (3.20)
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K, = [4T, (cos s, — 1X)+4AT1 cos 5, | (3.21)
1

Summation of moments about the x-axis gives:
>Mx=0=K,, x, > K,,=0 (3.22)

Summation of moments about the y-axis gives:

EMy=-3F h=-K; hx;=Kg X (3.23)
Where, h is the distance between the center of mass and the bottom of the platform

(Figure 3.5).

= Kg =(-Ky h) (3.24)
The negative sign occurs due to the counterclockwise moment

Summation of moments about the z-axis gives:

> Mz=0=K,, x, =K, =0 (3.25)

These coefficients agree well with other researchers as Jain, 1997, and Ali, 1996.

3.2.2.2 Sway (2) Direction (Figure 3.5)
The coefficients of the second column of the restoring force matrix are found in a

similar manner by giving a unity y displacement in the y-direction (sway):

Kp=0 ,Ks=0 and Ke=0 (3.26)
4T, +A4T,)
Ky =—7—- 3.27
22 \/XZZT (3.27)
<, - [4(T, [cos & — 1])]+[4 AT, cos &] (3.28)
X
Kip =—hKy, (3.29)

The negative sign occurs due to the counter clockwise moment.

Where AT, is the increase in tension due to sway and &, is the angle of inclination

of the cables with respect to the vertical when under sway movement

Where; AT, =% (3.30)
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AL=xZ+1* -L (3.31)
X, L

A S ==
X2+ 12 % Jxa+Lr

These coefficients also agree with these presented by Jain1997, Ali, 1996.

sing, = (3.32)

3.2.2.3 Heave (3) Direction:
The third column is derived by giving the structure an arbitrary displacement in the

z direction (heave). The sum of the forces in the all direction yield:
>HX=YFy=>Mx=x>My=3M, =0

= K3=Kyu=K, 3 =Kg;=Kg;=0 (3.33)
The sum of the forces in the vertical direction yields

YFz=4(T,+A4T, )+W —(F; +4F,)

(3.34)
= 4T, +4A4T, 4T, —AF, =K, X,
Where, xs is the displacement in the heave direction,
ATL EA
E= =SAT, =— X, =y xX 3.35
Ax, 3T VX X3 ( )
A7 D? 27 D2 27 D2
F = = Dr+ s, + ®s, |09 (3.36)
1 4 4
7 D¢ 2zD;  2zD;
F,, :4{ 2 (Dr+x,) 1 S, + 1 S, | P9 (3.37)
By subtracting Eqn. 3.38 from Eqn. 3.37, we obtain
2
aF, =4 ”? POX, (3.38)
From Eqgn. (3.38) and Eqn. (3.34)
= Ky =4y + 4R, (3.39)

These also coefficients also agree with Jain1997, and Ali, 1996.
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Figure 3.5: The Sway displacement in a rectangular TLP.
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3.2.2.4 Roll (4) Direction (Figure 3.6)

The coefficients of the fourth column of the restoring force matrix are found by
giving the structure in arbitrary rotation x4 about the x-axis. Summation of the moments
of the resulting forces about the x-axis give:

K1s = Kss= Kea= 0 (3.40)

The change in the initial pretension in each leg is obtained by examining the

geometry of Figure 3.6 as following:

h04

tanx, 1€024 = €04 — €514

h,, =H —-Hcosx,,e,, =Hsinx, e, =

Legis = \/(e§14 + h§4 ) +b,Legas =2b—Legyy,byy = Legia XCOSX,

Loy = Lecas XCOS X, .81, = Ly —D+ep4.85 =Ly +b+eyy,

hyy =Ly, xtanx, ,hy, =Ly, xtan b, Ly, = \/( L+hy,)* +eg,

LT24 = \/( L— h24 )2 +ezz4

= AT, :A—I_EX(LT24—L) (3.41)
AE
:ATM:TX(LTM_L) (3.42)
— AT, = 2AT,, + 24T,, (3.43)
e e
0., =tan’1(%),924 =tan’1(%) (3.44)

By taking summation of forces in y-axis we find

Sy = (2T, + AT, )sin6,, + 2(T, + AT,, )sind, )] = K,.x, (3.45)

—[(2(T, + AT, )sin@,, + 2(T +A4T,, )sind,,)] (3.46)

= K24 =
X,

By taking summation of forces in z-direction we find
>Z =K, xx, =[2(T, +AT,,)cos 8, + 2(T, + AT,, )cos 6,, —4T )] (3.47)

= K,, = [Z(TO +AT,,)cos 6, +2(T, +AT,,)cos b, —4T0)]/X4 (3.48)
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By taking summation of moment about x axis we find

[2(T, + AT,,)cos O,,(b+e,,)
—2(T, + AT, )cos8,,(b—e,,) (3.49)
+ F; xe,, +2(T, + 4T,,)sin6,,(H —h,,)

|+ 2(T, + 4T, )sin@,, x(H —h,,))

M, =K, xX, =

2(T,+A4T,,)cosd,,(b+e,)—2(T, +A4T,, )cosd,,(b—e,,)
= K,, =|+Fyxe,, +2(T, +4T,,)sind,,(H-h,,) X, (3.50)
+2(T, +A4T,,)sin@,,x(H —-h,,))

Most researchers assumed that the tether remains vertical so 824=014=0 (angle of
inclination is vary small) and also assumed that distance e14=e24, h1a=h24

From that AT,, =—A4T,, = %xw AT =0

This leadsto = K,, =K,, =0 (3.51)

= K,, =[2(4T,,b)+2(AT,,b)+ Fee,, |/ X, (3.52)

3.2.2.5 Pitch (5) Direction (Figure 3.7)

The coefficients of the fifth column of the restoring force matrix are found by
giving the structure an arbitrary rotation xs about the y-axis. Summation of the moments
of the resulting forces about the y-axis gives:

K2s = Kas= Kes= 0 (3.53)

The change in the initial pretension in each leg is obtained by examining the

geometry of Figure 3.7 as following:

) h
h,s =H —Hcos x;,6,s = H SiNX;,6,,5 = —2>— 8,05 =€,5 — €415
tan X,

[/ 2 2
CG15 — (9015 + hos ) +a, Lcezs =2a- LCGlS ' L15 = LCGlS X COS X

L
Lzs = Lcezs X COS X;5,€5 = I-15 —a+€55,65 = _L25 +a+€yys
h

15 = Lis xtan Xg,hys = Lys xtan Xg, Lyys = /(L +hyg ) + e
Lros =/(L—hys ) +e5
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AE

= ATy =TX(I—T25 -L) (3.54)
AE

= AT,. =—x(L;,- —L
15 =7 (Lris—L) (3.55)
— AT, = 24T, + 24T, (3.56)
0,5 :tanl(ef),ezs :tanl(%) (3.57)

By taking summation of forces in x-direction

Sx=[(2(T, + AT, )sinO,; + 2(T, + AT, )sind, )] = K,ox, (3.58)
__ [( 2(T +AT5)sinGyg + 2(T, + AT, )Singzs)] (3.59)

=K, =
X5

By taking summation of forces in z-direction we find

3 Z =Ky x Xg = [2(T, + AT, )cos O, + 2(T, + AT, )cos 0, — 4T, )] (3.60)
= Ky = [2(T, + AT, )cos O, + 2(T, + AT, )cos O, — 4T, )]/ %, (3.61)

y taking summation of moment about y-axis we find

[2(T, + AT,; )cos O, (a+e,)
—2(T, + AT,5 ) cosO,(a—e,s ) (3.62)
+ Fg xes +2(T, + AT, )sin6,.(H —h,;)

|+ 2(T, +AT,5)sin@; x(H —hy))

ZI\/Iyzk55><X5=

[ 2(T, +AT,; )cos O, (a+e,.)
—2(T, + AT,; )cosO,(a—e,;)

|+ F, xey +2(T, + AT, )sin@,.(H —h,. ) (3.63)

|+ 2(T, + AT )sin@s x(H —hyg))

Most researchers assumed that the tether remains vertical so 625=6015=0 (angle of

inclination is vary small) and also assumed that distance e1s=e2s, his=has

From that AT, = AT, = % Xs, AT =0
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This leads to = K, =K, =0 (3.64)

= K,, =[2(4T,ca)+2(AT,.a) + Fyey |/ X (3.65)

3.2.2.6 Yaw (6) Direction (Figure 3.8)

By giving an arbitrary rotation X, in the yaw degree of freedom, the sixth column

of the restoring force matrix can be obtained. The summation of the moment about the z-

axis gives:
Ki6= K26 = Ks = Ksg= O (3.66)
L, =/L2 +xZ (a2 +b?) (3.67)
[a2 2
sing, = w ,C0S & = LL (3.68)

The change in the initial pre-tension in each leg is given by:
ATg =A—LE(L1—L) (3.69)

By taking summation of moment about z-axis we find

S Mz=4(T, + AT, )(a? +b? )’Ii—‘S: Ky, % X,

(3.70)
2 2
s Ky, =4(T, +4T, )3 *07) :b ) (3.71)
1
Finally, through summation of forces in the vertical direction one obtains:
SFz=W —F, +4(T, + AT, )cos 5, = Ky X, 3.72)
L L
= K, X, = —4T, +4T, L—+4AT6 — (3.73)
1 1
L L
= Ky =[4TO(I_——1)+4AT6(L—)]/X6 (3.74)

1 1

These coefficients also agree with Jain, 1997, and Ali, 1996.
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The stiffness matrix shows:

1- The presence of off-diagonal terms, which reflects the coupling effect
between the various degrees of freedom,

2- The coefficients depend on the change in the tension of the tethers, which
is affecting by the buoyancy of the system. Hence, the matrix is response
dependent.

Hence, the stiffness matrix [K] is not constant for all time instants, but the
coefficients are continuously changing at each time step depending upon the response

value at the previous step.

3.2.3 Mass Matrix, [M]
As shown in section (3.1.2.1) [M] is assumed to be lumped at each degree of

freedom. Hence, it is diagonal in nature and is constant

M 0 0 0 0 0
0 M 0 0 0 0
0 0 M 0 0 0

MI=| 0 0 M2 0 0 (3.79)
0 0 0 0 Mr* 0
0 0 0 0 M

Where;

r, Is the radius of gyration about the x -axis,
r, Is the radius of gyration about the y -axis,

r, Is the radius of gyration about the z -axis,

Using the added mass, Ma we obtain all terms of the mass matrix (refer to Eqn.

3.4). These terms can be obtained as follows

68



S .
e = A
~ T .
| : f \ | -~..___%\ (Total)SIN:
N _

\ — i 7

— .-“ 3
(TotnT)SIN, {&‘»/’fﬁ

e
A
I\\___,ﬂ kﬂﬁ
Cender of Groviy Z;
[ ol e |
— e
HEER T | x
—?: : i : i i f_é T,
| | - | |
N I _T_ d1 ]
LT 1]
(To-aT) | Toral)| ’I‘ﬁi} %Tr&y
Y ’
%5 NP

i| Ii f \\_ﬁ i

Figure 3.8: The Yaw displacement in a rectangular TLP.
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3.2.3.1Surge Direction

47D} 27D,
M., =C, P|:£C{ 4 } ( 4 Sb):| (3.76)
HM D? } Dp }
=M., =C, p (he +77) [+( Sb) (3.77)
M. =M., =C, ,{4] {”55 (z—H, )dz}( 7Dy Py Shx—H,_ )} (3.78)
:MaSl:Ca [[4”D2 - C'c %—ch):l_'_(Zﬂ-Dp ><SbX_Hom )] (379)

3.2.3.2 Sway Direction

D"Z 7ZD§
M, =C, p|4| Z[+2( sa) (3.80)
—hc 4 4
2 7 D?
—M,,, =C, pH‘“’DC (h, +n)}+2( 2 Sa)} (3.81)
7 D? 2
— — c —_ P —
Moz =My, =C p4{c[ ; (2-H )d2}+( xSax—Hy ) (3.82)
2 - 2 27 D?
:Ma42:ca [[47[D HChC+%_HCU)}+( ﬂ-4 - ><SaX_HOm )] (383)
3.2.3.3 Heave Direction
272'D§ 27Z'D§
Mass =C, p| (=, -=5a)+(=, Sb) (3.84)
7Z'D§ 7Z'D§ 57a 7Z'DF2)
M., =M_,;=C, p 2 xSax—b |+ 2 x Saxhb 1 = (3.85)

2
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3.2.3.4 Roll Direction

4j[”5§u—H

M. =Cop

_47TD2

M. =C. p

2

T
+2(

3.2.3.5 Pitch Direction

—hc

M5 =C, p

57a 7z'D§ ) 7Z'D§
+2£ 4 4
3

_47zD

(H h, +h’H, +-—=
M.ss =C. p

2

7er
+2(

3.2.3.6 Yaw Direction

77ZD2 7Z'D§ )
+2 [ —LEyidy+ 2 x Saxb

he n
| HZh, +h? H-+3-+H2n—n2Hc+——

PXSamej)+[2

4j{ﬁ5§(L—H )dﬁ+2(

h? n’
¢ +HZ *H, +—
3 =1 3]

XbeHmj)+[2

2

)? dz}+2( P xSaxH,’)

3

2

P xShxH, %)

bexazJ

2 2
ﬂDpi + ”DpxSabe
4 12 4

D2 &3 D2
77 Sa + thbxaz
4 12 4
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M1 =M, =C, p| =

4

2

—-hc

Mu, =M 56 =C, p| =

_Sa
2

7| & D,
2;[4
—hc

B {”Es bdz }

—hc

2

% 3 705
4j dez j adz+2] dx
4 4 a4

—-hc
2

n)(e*

D —*a (h +77)]

—hc
Ma66 :Cap sp
P} 7er, )
+2 [ ——y“dx
% 4
2
2
”fc b2(h, +
M. =C, 0
Sa
+2
( ) )

2adz} 2]{ ECZ(Z_H )—adz}t

j[”fcz( z-H, ) —bdz}

Sb3

)

(3.92)

(3.93)

(3.94)

(3.95)

The presence of off diagonal terms in the mass matrix indicates a contribution in

the added mass due to the hydrodynamic loading. The loading will be attracted only in

the surge, heave and pitch degrees of freedom due to the unidirectional wave acting in

the surge direction on a symmetric configuration of the platform about the x and z axes.

Therefore, added mass matrix can be written as:

M., 0 0
0 0 0
0 0 M
UBE
0 0 0
MaSl 0 Ma53
0 0 0

M als

M a35

O O O O o o
O O O o o o
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3.2.4 Structural Damping
Appling Egn. (3.6) in section (3.1.2.3) we get the mode shape as

Heave Sway Roll Surge Pitch Yaw

0 0 0 1 1 0
0 1 1 0 0 0
1 V \Y V \Y Vv,
V = 1 3 5 7 9 (3.97)
0 V, Vv, 0 0 0
0 0 0 V, V, 0
0 0 0 0 0 1
And the damping matrix will be
C, 0 C, 0 Cis 0
0 C, Cs C., 0 0
C — C2 C:5 C9 C14 Cl? C:19 (398)
0 Cs C Ci; 0 0
C, 0 C, 0 Ce 0
0 0 C,, 0 0 C,,

It should be noticed that motion in direction z depends on motion in all directions,
in agreement with Jain, 1997, and Ali, 1996. But motion in direction (4) depends on
direction (2) and direction (3) motion contrary to Jain, 1997, and Ali, 1996, where they
assumed that it is independent. Moreover motion in direction (5) depends on direction (1)
and direction (3) motions contrary to Jain, 1997, and Ali, 1996, where they assumed that
it is independent.

3.2.5 Hydrodynamic Force Vector, {F (t)} on Rectangular TLP

As shown in section (3.1.2.4) the hydrodynamic force attracted by the members
due to a uni-directional wave train in the surge direction {F (t)} is given by Egn. (3.8)
and the values of Fo1=Fs1=Fs1=0. Expressions for Fi1, F31, and Fs1 can be obtained as

following:
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3.2.5.1Surge Force F11
The horizontal surge force on the TLP contributions to the surge force from

horizontal forces on the hulls (pontoons) and vertical columns, Figure (3.3).

The inertia surge force on a single column located at distant x from the wave crest,

is obtained by

Fi, = [ (25xa, xdz)x px D¢ xC,,dz (3:99)
F1. :jzzjhc Sx o’ xHxe™ xsin(kx—at)x px.25x DZ xC, xdz (3.100)
i :
= px MZC xC_xa’ ><%><sin(kx—a)t)j(eZk )dz
2 ik —hek
= px s xC_xa’ xﬂxsin(kx—a)t) € ¢
4 2 k k
2
= px i xC,. ><g><i><sin(kx—a)t)[e’7k —e’hc"]
4 2 (3.101)
so for columns at x=a
D; H Tk _ gk
Pl + Flgy =20% 20 xC, xg x?xsm((ka)-a)t)[e o] (3.102)
and for columns at x=-a
PD; H axk _ p-fok
Fl.+Fl,=2px—=xC_ xgx—xsm((-ka)-a)t)[e X —ee ]
4 2 (3.103)

Also the drag surge force on a single column located at distant x from the wave

crest, is obtained by

kz ]
4 oH ﬂeZkZ COS( kX—COt)-FM

1
—_ (7 -—
Pl = [ 3CorDerg ™| T - d dz (3.104)
—2e"U, i
ﬂH e2kZ ZekZUC ekZUC ekZUC i (and
) wH T oK COS(kX—C()t)+ d <K —d k2 + K
=20, 22| T ¢ 8 8 (3.105)
3 V4 2e
— Ux
k —lz=—h¢
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[ H e ne*U.  e*U. e*U_ |
———cos(kx—at)+ ¢ — =+ :
T 2k dxk hoxk? K
2 wH| 2e™* H e 2k h e U
F1,==C,pD. —| — U, -—— cos(kx—amt ) + ———¢ 3.106
ha =53 CoPDe = 7 == U =T oos( ok (3.106)
e *Uc e M*Uc 27N
>~ + U,
dxk k k
=>x=a=Fl,, +Fl, (3.107)
X=-a= Flg +Fl (3.108)

Where Uy is the body velocity in surge direction, and U is the current velocity

So total surge force on columns equal

=>Fl.=Fl,+Fl,+F1 . +Fl  +F1,,+Fl,;+F1l,+Fl, (3.109)
The inertia surge forces are experienced only by the hull aligned normal to the

direction of wave propagation. Thus an inertia surge force varies only due to wave action

on hull 3 and 4 and is obtained by:

A 2 2
Fl,=["p ﬂzp Cn % He " sin( kx— et )dy (3.110)
—b
_ ﬂDFZ’ o’ “hok o
F1, = p=,=C, —-He ™ sin(kx—at)Sb (3.111)
= x=a—Fl, (3.112)
x=-a=>Fly (3.113)

Also the drag surge forces are experienced only by the hull aligned normal to the

direction of wave propagation. Thus drag surge forces varies only on hull 3 and 4 and is

obtained by
j?bic pD [ﬂje_h‘)kcos(kx—a)th_h"+dU -U, (3.114)
2 d77pIlT d c
Fl, = dy
hek —h, +d
x|—e " cos(kx—amt ) +—=2 U.-U,

1Cd,onKﬁje_ hok cos(kx—awt )+ _h‘:;d U, —UX}

RE T (3.115)

—h, +d

“—e ™ cos(kx—mt )+ U. - U, |Sb
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=x=a—>Fl,, (3.116)
x=-a—>F1; (3.117)
So total surge force on hulls equal

= F1 =F1,+F1,, +Fl, +Fl,, (3.118)

So the total surge force Fi1

= F, =F1, +F1, (3.119)

3.2.5.2 Heave Force Fa;
The vertical wave force on TLP results from several factors:
(1) The dynamic pressure at the bottom of the columns.
(2) The forces on the hulls.

(3) The change of the instantaneous waterline on the columns.

Effect of the dynamic pressure at the bottom of the columns can be obtained as:

presure = p[dd_ctb} = %e‘“Ck cos(kx—at) (3.120)

z=—h¢

With further assumption that column diameter is small compared to the wave
length, so that the dynamic pressure can be assumed to be constant across the bottom

surface, the vertical columns force is

2

force = presurexarea = ﬂ% 9 %e‘“‘fk cos(kx—at) (3.122)
=>X=-a=>F3;,;+F3, (3.122)
x=a= F3,+F3, (3.123)
So total heave force on columns equal

= F3. =F3, +F3, +F3, +F3, (3.124)

The magnitude of vertical force, hulls 3 and 4, is constant along the hull length and

the integration reduces to a simple multiplication. So the inertia force

A 7ZD2 COZ
F3 =—[° p=—=2C_—He ™ cos(kx— wt)d
o =P O (o at)dy (3.125)
2 2
F3,=-p ﬂgp Cn % He ™" cos(kx— et )Sb (3.126)
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=>x=-a—>F3, (3.127)
x=a—>F3, (3.128)

Also the drag force will be

jiicdpr[[éje‘hok sin( kx—at )+ _hij“Ld U, —uv}
- d

b2
P34 = Choad y (3.129)
x| —e " sin(kx— ot )+ ———U_. - U,

lc D (ﬁje‘hoksin(kx—wt)fho+du U (3.130)

2 dp p T d C \Y
F3, =

—hek - —h, +d

x|—e " sin(kx—at)+ ——-U. — U,/ |Sb
= x=-a—>F3,, (3.131)
x=a—F3,, (3.132)

Where, Uy is the body velocity in heave direction and Uc is the current velocity
The magnitude of vertical force, hulls 1 and 2, is varied along the hull length and

the integration reduces to a simple multiplication. So the inertia force

a ﬂDg -’ —hok
F3,.+F3,,=2] _AapTCm — He ™" cos(kx— et )dx (3.133)
2 A A
=252 ¢ 9 ek [sin( k a—at ) —sin(k (=a)— ot )]
4 2 (3.134)
Also the drag force will be
7H -2 sin( kx—at)
—khg
F3p + F3, =2f ialcdpD,, (Aot) (Chyrd)e B0y, (3.135)
2 3 7 d
—2e7U,
T (d-h,)e*exu, |
=fcdprﬁ —Txke cos(kx—amt )+ r (3.136)

3 _
—2xe U,

X=—a
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So total heave force on hulls equal

= F3p = F3ip3 + F3ip4 + F3ipl + F3ip2 + F3dp3 + F3dp4 + F3dpl + F3dp2 (3.137)
Finally the total heave force Fs;
= F,, = F3, + F3, (3.138)

3.2.5.3 Pitch response Fs;

The pitching behavior of a rectangle TLP is some what different from that of a free
floating body like a ship or a semi submersible. In the latter case the restoring moment is
provided by the action of emerged and immersed volumes around the water plane. In
contrast for a TLP, the pitch restoring moment is provided primarily by changes in the
tether tension due to elastic deformation. This effect outweighs, by far, the contributions
due to changes in column submergence. In strict senses, the pitching access is one about
which moment of all the forces (including elastic tether deformation) are zero. The tether
deformation, in turn, depends on the location of the pitching axis. Thus, explicit solution
for the location of the pitch access is not possible. Here, it would be assumed that the
pitch access is at the level of the connection of the tethers to the columns (kirk and Etok,
1979).

The contribution to pitching moment comes from four sources:
1) The horizontal acceleration on all vertical columns.
2) The horizontal acceleration on hulls aligned normal to the direction of
wave propagation.
3) The vertical acceleration of the wave particles on hulls 1, 2, 3 and 4.

4) The dynamic pressure variation on the bases on the four corner columns.

The horizontal acceleration on hulls 1 and 2 have no contribution to the pitch
moment. However, the horizontal force on hulls 3 and 4 produces a pitch moment. This
is obtained by multiplying the horizontal force with the lever, measured from the
pitching axis. Thus, the pitching moment from hulls 3 and 4 can be obtained as

following:
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For the inertia force

A 2 2
MH,, =] ap”EiP Co %HE*“‘* sin(kx— et )(—H,,, )dy (3.139)
b
2 2 (3.140)
MH, =—p ﬂg" C.. % He ™ sin(kx— et )H,,Sb
= X=-a—> MH;, (3.141)
x=a—>MH,, (3.142)
For the drag force
| bA%Cdpr{[gje_ hok cos(kx—a)t)+%UC —UX}
MH, =| . ay ~ (3143)
| gt cos(kx—a)t)+( o )Uc —U,|[(-H,,)
1 Y —hk (d—h,)
—=C,oD ||— e ° cos(kx—amt)+ U, -U
MH,, = (d-h) (3.144)
x| —e """ cos(kx—at )+ °’U. - U, H,,Sb
= x=-a—> MH, (3.145)
X=a—>MH,, (3.146)
So total surge pitching moment on hull is
MH, =(MH,, + MH; + MH,; + MH,, ) (3.147)

The inertia surge pitching moment on a single column located at x from the wave

crest, is obtained by

2 2
MH, =", .(z—Hc) pZ D/ C, COZH sin(kx— at )e¥dz (3.148)
e’ gk TNk
D2 . WH . (U_HC)T_k_ZJr k?
= C. sin(kx—at) " (3.149)
4 2 _(=h,—Hc)e™
k
= X=-a—> MH, +MH, (3.150)
X=a—>MH,, +MH,, (3.151)
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And the drag surge pitching moment is:

7H
MH,. =

(Z—-Hc)dz]

?cos(kx cot){(z—
—C, pbc—

3 V4 U
- d

U ekZ

Uce®

2kz

He)——-—
) 2k

kz

(22—

ekz

+

C 7 —
¢

H, )~

{ZUX((Z—HC)T—

jhc[ C, oD, o {T e? Cos(kx—at)+ 2U,e
T

e2kz
)

Hc)+

ekz
k—ﬂ}

ZekZ

2nk

21k
" oe

)

Z=n

e

—2hck

7=—h¢ |

e
—HC _
(7=He) ==

_(~h —Hc)e™™"
2k

ECd pD, ﬂ{ ﬁcos(kx—cot)
3 V4 T

e772 e277k —hck
(n- HC)_F(ZU— Hc)+ v +

e’7k e

°(

—hC 2hck )
he (h—H)—e )+

u.e”
k

(n-H)->
U] e‘khc U e‘khc

k

(-h, —H_)+

eqk el]k e—hck —hck
“Ho) & L
(n—He) = 7+

(U, :

(=h. —Hc))

=>X=-a—>MH +MH,,
Xx=a—>MH,,+MH,,

So total horizontal pitching moment on columns will be

ich

+
4k?

>—(—2h, —Hc)

ek

%

MH [MH +MH._+MH._, +MH._, + MH_ + MHM]

+MH,, +MH 4
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(3.152)

(3.153)

(3.154)

(3.155)
(3.156)

(3.157)



So total surge moment on TLP will be
MH =MH, + MH, (3.158)
To calculate the vertical pitching moment on hulls, first, consider hulls 1 and 2

aligned along the direction of wave propagation. The vertical pitching moment on these

hulls is given as

T 2 —H _
MVipl + I\/IVipz ={ZZpCm DFZ, I_gTa)ze Ko COS(kX—COt)XdX:| (3159)
I PREFYING iwzek,,o{xsin(kx—a)t)+cos(kx—a)t)} i (3.160)
4 "2 k k?
And the vertical drag moment will be
- A y ?e‘z“‘" sin(kx—at)
MV, + MV, =2] *, 2 C prg_X‘" e dx  (3.161)
- 7|, d=hJe U —2e My,
d
ﬂe‘z”‘{_ xcos(kx—at) N sin(kx— ot )}_ -
2
fcdprﬂ T . K k (3.162)
=3 T N (d—h,)x‘e OUC—xze‘khOUv
2d ]

Next, consider the effect of the vertical acceleration on hulls 3 and 4. These hulls
are parallel to the Crestline, and the force per unit of length is constant along the length
of the hull. The pitch inertia vertical moment is obtained by multiplying the vertical
force, derived for heave excitation, by the lever distance from the centerline so the force

on these hulls will be:
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,\ 2
My, --2(* pec, & @ He ™ cos( kx— at )xdy (3.163)
-b
7ZD2 2
MV, =-2p 4P C, > — He™* cos(kx—at )xS, (3.164)
= Xx=-a—> MV, (3.165)
Xx=a— MV, (3.166)

Also the drag vertical pitching moment will be

jgg%Cdpr[(g]e_ MK ginCkx—at )+ 9 ;h° Ju, —uv}

(d_ho)

MV,, = (3.167)

xdy

UC_UV

X

7H o -ho sin(kx— ot )+

(d_ho)

1 ) -hk .
ECdpr[(?Je 0 Sln(kX—a)t)+ UC_Uv:|
MV, = (3.168)

dp

[ g ho sin(kx—wt)+%Uc - U, [xSb
= X=—a—>MV, (3.169)
Xx=a—>MVy, (3.170)
So total heave pitching moment on hull will be
MV, + MV, + MV, ; + MV, + MV, + MV, + MV, ;5
MV, = (3.171)
+ MV,

For calculating the vertical pitch moment on columns, the exposed base of the
corner columns i.e. all columns of the TLP experience a hydrostatic pressure which has
no contribution to the pitch moment, when the integration is taken to the still waterline.
However, there is dynamic pressure variation due to the passage of the waves whose net

contribution is non zero. The associated pitching moment arising from this is given by

2

D H o nk

MV, =—¢° —xe ¢ cos(kx— awt
e =2 A5 ( ) (3.172)
= Xx=-a—> MV, + MV, (3.173)
X=a—>MV, +MVg, (3.174)

So total heave pitching moment on columns will be
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MV, =(MV,; + MV, + MV, + MV,;) (3.175)
So total heave pitching moment on TLP will be

MV =(MV, + MV,) (3.176)
So total pitching moment on TLP will be

R =(MV+MH) (3.177)

3.3 Development of a Triangular TLP Model
The same development for the rectangle model will be carried out, except that we

have only three tethers instead of four. At the original equilibrium position (Figure 3.9).

3.3.1 Draft Evaluation

Summation of forces in the vertical direction given by Eqgn. (3.8) and Eqn. (3.9)
applies with the exception that we have three tethers instead of four.
But

Fs :%p;zg( DD, +D;s) (3.178)

From Eqg. (3.168), we get:

D, =[[{(W +T, )/(gpﬂg)—(DﬁS)]/Df} (3.179)

3.3.2 Stiffness Matrix of the Triangular TLP Configuration
As shown in section (3.1.2.2) the coefficients of the stiffness matrix [K] of a
rectangle TLP are:

K, 0 0 0 K, 0
0 K, 0 K, 0 0
[K]= Ka Ksz Ksa Kss Kss Kss (3.180)
o K, 0 K, ©
K, O 0 0 K, 0
0 0 0 0 0 K

And can be determined as following
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Figure 3.9: The triangular TLP (plan and elevation)
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3.3.2.1 Surge (1) direction (Figure 3.10)

By giving an arbitrary displacement xz in the surge direction, the increase in the
initial pretension in each leg is calculated as rectangular TLP as following:
Equilibrium of forces in the surge direction gives

> Fx=3(T, +4T,)sind, =K,; X, (3.181)
From Eqgn. (3.13), Eqgn. (3.14), Eqgn. (3.15) and Eqn. (3.17)

Xl _
(T, +AT
= K11=—( 4%, (3.183)

X2+

Through summation of the vertical forces, we get:

> Fy=K;, X, =+3(T, +A4T, )cos o, +W —F, (3.184)
K, =t [3T, (cos 5, —1)+3A4T, cos &, | (3.185)
Xl

Summation of moments about the x-axis gives:
>Mx=0=K,, x, > K, =0 (3.186)

Summation of moments about the y-axis gives:
>My=—YF h=—K, hx, =K, X, (3.187)
= Ky, =(=Ky h) (3.188)

The negative sign occurs due to the counter clockwise moment

Summation of moments about the z-axis gives:

>Mz=0=K, x, = K, =0 (3.189)

Also these coefficients agree well with other researchers (Ex. Jain, 2002).

3.3.2.2 Sway (2) Direction (Figure 3.11)

The coefficients of the second column of the restoring force matrix are found in a
similar manner by giving x> displacement in the y-direction (sway)
Kiz=0 (3.190)
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K22 -

K32 =

K42 =

The negative sign occurs due to the counterclockwise moment

_3(T, +4T,)

X+ L2

[3(T, [cos & —1])]+[3 4T, cos &y |
X2

-hK,,

Ks2 =0
Ke2 =0

And also Eqn. (3.30), Eqn. (3.31) and Eqgn. (3.32) can be applied.
Also these coefficients agree with these presented by Jain, 2002.

3.3.2.3

Heave (3) Direction:

(3.191)

(3.192)

(3.193)

(3.194)
(3.195)

The third column is derived by giving the structure an arbitrary displacement z in

the z direction (heave). The sum of the forces in the all direction yields:

YFx=XYFy =3 Mx=Y My=3>M, =0

So;

The summation of the forces in the vertical direction yields

K13 = K23 = K43 = K53 = K63 =0

> Fz=3(T,+A4T; )+W —(F; +4F,)
=3T, +34T, -3T, —4F, =K, X,

Where xz is the displacement in the heave direction,

7 D? D2
F, =3|—Dr+—"s
by 4 4 j|m
- )
F, =3 ”? (Dr+x; )+ ps},ogg

By subtracting Eqgn. (3.200) from Eqgn. (3.199) we get

2

4R =3 7D POX,

4

From Eqgn. (3.201) and Eqn. (3.198) we get
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Figure 3.10: The Surge displacement in a triangular TLP.
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Figure 3.11: The Sway displacement in a triangular TLP.
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= Ky =3y +4F, (3.202)
Where, y is given by Eqn. (3.35).
These coefficients also agree with those of Jain, 2002.

3.3.2.4 Roll (4) Direction (Figure 3.12):

The coefficients of the fourth column of the restoring force matrix are found by
giving the structure an arbitrary rotation x4 about the x-axis. Summation of the moments
of the resulting forces about the x-axis gives:

K1 = Ksa= Kes= 0 (3.203)

The change in the initial pretension in each leg is obtained by examining the

geometry of Figure 3.12. So,

: h
h,, =H—-Hcosx,,e,, =Hsinx, e, =—>—,6,,, =€, —€,
4 41%04 47%014 = o0 X, 24 4 14
> 2. PL
Lecis = (e§14 + h024 )+—Lceaa = PL—Lcguarbis = Legia XCOS X,
2 (3.204)
PL PL
Loy = Legas XCOS X, 81, = Ly _7"' €o24:€24 =—Loy +7+eoz4
hi, =L, xtanx, ,hy, = Ly, xtanx, Ly, = \/( L+hy, )’ +ej,
Lsos :\/(I—_h24 )2 +e§4’|—'r04 :\/(I—+ho4 )2 +e§4
AE
= AT, =—x(Ly,—L)
L (3.205)
AE
= AT, ==Ly - L) (3.206)
AE
= AT,, =—x(Lo, —L
04 L x(Lros ) (3.207)
= AT, = AT: +AT,, + AT, . . (3.208)
0., =tan‘1(%),6?24 =tan_l(%)"904 :tan_l(%) (3.209)
By taking summation of force in sway direction we get
Sy =K, xx, = (T, + 4T, )sing,, +(T, + AT,, )sing,,
#50  (T, + 4T, )sing,,) (3.210)
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Figure 3.12: The Roll displacement in a triangular TLP.
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[((T, + AT, )sin6,, +(T, + AT, )sin@,, +(T, + A4T,, )sind, )]
X4

=K,, =-

By taking summation of force in heave direction we get

SZ =K., xx, = [((T0 + AT, )cos 6., + (T, + AT,, )cos 6’04}
- 'Z34 4 —

+ (T, + 4T,, )cosd,,—3T,)

K. = (T, +4T,,)cos @, + (T, +AT,, )cos 6,, g
|+ (T, + A4T,, )c0s0,,~3T) 4

By taking summation of moment in roll direction we get

PL
—(T, +4T,, )COS‘924(7 — €54y )+ Fg x 8y,
XMy =Ky xX, =|+(T, + 4Ty, )sing,(H —hy,)
+(T, + ATy, )sinGy, x(H —hy,)
+(T, +4T,,)sind,,(H —hy,,)

((T, + AT, )cos 4914(|32|'+e14 )+ (T, +4T,,)cosb,, xe,,

—(T, +4T,, )005024(PZL—e24) )+ Fg xe,,
=K, =|+(T,+4T,,)siné,(H-h,,)

+(T, + A4T,, )sing,, x(H —h,, )

+(T, +4T,,)sind,,(H —h,,,)

((T, + 4T, )cos 6?14(% +e,)+ (T, +A4T,,)cos G, xe,,

(3.211)

(3.212)

(3.213)

(3.214)

(3.215)

Most researchers assumed that the tether remains vertical S0 #24=014= 604=0 (angle

of inclination is vary small) and also assumed that distance ei1s=e24=€o4, h14=h24

From that AT,, =—-A4T,, :%%m cos(x, ), AT =T,

This leads to = K,, =0
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=Ky = [To + ATy, + Fy ]eo4 (3.217)

=K, = %%cos( X, ) (3.218)

3.3.2.5 Pitch (5) Direction (Figure 3.13)

The coefficients of the fifth column of the restoring force matrix are found by giving
the structure an arbitrary rotation xs about the y-axis. Summation of the moments of the
resulting forces about the y-axis gives:

Kos = Kas= Kes= 0 (3.219)
The change in the initial pretension in each leg is obtained by examining the
geometry of Figure 3.13. So,

05

h.=H-Hcosx.,.=Hsinx.,e,.=—>—
05 5105 51~015 tanX5

1€025 = €55 — €15

Pb
Leeis = \/(e§5 + h025 )+ ? 1Leeas = PP —Legissbys = Legys XCOS X

Pb 2Pb
I-25 = Lc025 X COS X5 ,€5 = I-15 _? +€525:€55 = _L25 + 3 +€525

h,; = L xtan xg,h,s = Lo xtan X, ,L;,. = \/( L+h,)* +e’

Lros =\/( L—h,s )2 +e§5

= ATy =A_LEX(|—T25_L) (3.220)
AE
= AT 5 _TX(LT15_L) (3.221)
= AT, = 24T, + AT, (3.222)
0, =tan*(15),0,. =tan*(522) (3.223)
L L
By taking summation of force in surge direction we get
S x= Koo x % = —[(2(T, + AT, )sin6,, +(T, + AT, )sin6s; ] (3.224)
Lok - [T, + AT )sinG, + (T, + AT, )sing, )| (3.225)
15 X5
By taking summation of force in heave direction we get
(3.226)

> Z =Ky x X = [2(T, + AT, )cos O, + (T, + AT, )cos 6, — 3T, )]
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= Ky = [2(T + AT,5)C0S O,5 + (T + AT,5 ) cos 6,5 — 3T, )]/Xs (3.227)

By taking summation of moment in pitch direction we get

2(T, + AT, )cos 4915(%b +e5:)

2Pb
z M y = K55 X X5 =\ (TO + AT25 )C05625( 3 - e25 ) (3228)

+ Fy xe +(T, + AT, )sin0,.(H —h,.)
_+(T0 + AT )sind, x(H —h;;))

2(T, + AT, )cos 6’15(F;b +€5:)

2PDb
= K55 = _(To +AT25 )COSGZS(T_eﬁ) Xs (3.229)
+Fg xes +(T, +4T,5)sinb,s(H —h,s)

(T, + AT, 5)sinO s x(H —hy))

Most researchers assumed that the tether remains vertical so 025=015= 005=0 (angle
of inclination is vary small) and also assumed that distance eis=€2s, his=hos

From that 24T, = —AT,, = %%b X5 COS(X; ), AT =0

This leads to = K,; =K, =0 (3.230)
= Kgs = Fy A sin(x,) (3.231)
X5

3.3.2.6. Yaw (6) Direction (Figure 3.14)

By giving an arbitrary rotation Xs in the yaw degree of freedom, we get the sixth
column of the restoring force matrix.

. gev2a’ L
sino, = ,COS O, _L_l (3.232)
pl 2 pb 2
a’=(— o 3.233
(5 +(3) (3.233)

L, =/L® +x2(2a?) (3.234)
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The change in the initial pretension, in each leg, is given by Eqn. (3.66).

By taking summation of force in surge direction we get

> Fx=(T, + AT, )[-c0s(30 — X, )+ c0s(30 + X, )—sin(x, )] = KX, (3.235)
= K, =0 (3.236)
By taking summation of force in sway direction we get
S Fy=(T, + AT, )[-sin(30 — x, )—sin(30 + x, )+ cos(x, )] = K s X (3.237)
=K, =0 (3.238)
By taking summation of forces in the heave direction one obtains:
S Fz=W —FB +3(T, + AT, )cos 5, (3.239)
= Ky Xg =—3T, +3T, L+3AT6 L
Ll 1
= K, =[3TO(L£—1)+3AT6(L£)]IXG (3.240)

1 1

By taking summation of moment in the roll direction one obtains:

> Mx=K,; xx; =0 (3.241)
=K, =0 (3.242)
By taking summation of moment in the pitch direction one obtains:

SMy=K,, xx;, =0 (3.243)
=K, =0 (3.244)

By taking summation of moment in the yaw direction one obtains:

S Mz=3(T, + AT, )(2a?) ’C—f’: K, x X, (3.245)

(2a°)

1

= Kge =3(T, +4T; ) (3.246)

These coefficients are agreement with Jain, 2002.
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Figure 3.13: The Pitch displacement in a triangular TLP.
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The stiffness matrix shows:

1- The presence of off-diagonal terms, which reflects the coupling effect
between the various degrees of freedom;

2- The coefficients depend on the change in the tension of the tethers, which is
affected by the buoyancy of the system. Hence, the matrix is response
dependent.

Hence, the [K] is not constant for all time instants, but the coefficients are replaced
by new values computed at each time step depending upon the response values at the

previous time step.

3.3.3 Mass Matrix, [M]
As shown in section (3.1.2.1) [M] is assumed to be lumped at each degree of
freedom. Hence, it is diagonal in nature and is constant and given by Eqn. (3.75).

Now we deduce every coefficient on Eqgn. (3.4).

3.3.3.1 Surge Direction

B 2 D2 2 Dz
M. =C. p| 1122 dz [+(Z22 )+ (22 s 5in ) (3.247)
—hc_ 4 4 4
| 7D} 7D} 27D
=M., =C,p 4° (he +7) |+( 1 S)+( 2 Ssin” o) (3.248)
3.3.3.2 Sway Direction
[37D? 27 D2
M., =C, p ? 37D g +( i ®Ssin’ g) (3.249)
—hc_ 4 4
7 D? 27D’
= M.y =Cap[ ﬁ? (h, +f7)}+( 2 3 Ssinzﬁ)} (3.250)
3.3.3.3 Heave Direction
7D}
M55 =3C, p| ( 2 S) (3.251)
Mas =Mas =M =M 3 =0 (3.252)
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3.3.3.4 Roll Direction

1| 37 D? :
M., =M =C, pl:{ (z—H )dz:|+(
37 D? —h2 2
{ “(—= Hchc+%_Hc77)}
=>M,, =M, =C, p )
27rD -
+( P xSx—H,, xsin’ B)
M. =M_,=C 21T ydy + + =
gV a3 Ve Py i = ({cosﬂ —Is cosf |
L 2 2
2 z
JF’”DW 2-H )dz}(
—hc 4

2

4 p in 2 2
M,..=C, p|+( xSxsin® fxHZ

2 2 dy o dy
2d + y y+ 2
Lydy (j)c é cos

2

=M. =C, p D2
T
P

4 12

”D; 2 -2
+2( 1 SxH,, xsin“g)+

3.3.3.5 Pitch Direction

j[”DCZ(z—H )dz}r(

2

+( 2 PxSx—H, xsin’a)

96

PxSxsin® fxHZ )

2 3 3
3”5° (Hfhc+thc+h?°+ H(:277_772HC+T7_J

)

3
7D} s°
4cos p 12

><S><_Hom)

_J_

7D, .
P xSx—H,, xsin® B) (3.253)

(3.254)

(3.255)

(3.256)

(3.257)

(3.258)



xD? - n’
{ ( HChc+ 2 _ch):|
2
= M5 =M, =C, p| +(—"xSx-H,) (3.259)
27 D2 .,
+( P xSx—H,, xsin’a)
7D, -p T ZD?
M., =M_;;=C, p PxSx—2|+2 | —2 (3.260)
4 3 5 4 cosa
3
7 D? 7 D? 2 |2:‘b
=C,p P S x_Po | p_X
2 4 3
3
) 148 _ss
D - D T 9
=C,p i P xS x P +27[ p|_9 9
4 3 4 2* cosa
7ZD2 pb sz
—c, p (52 Reys
6c05a
zD;[-Sp,  S?
= Mys =My =C, p 4p{ 3b+300b3a (3.261)
2 2
jF’”DC( z-H )dz}r( > xSxsin’axHZ,)
—hc
”DZ —pb i ”DFZ) 2 2
M, =C, p| +(—= 1 P xS x 3 )+( 2 xSxsin“axH ) (3.262)
ZLSb 2
N 272'Dp 3 X dy
4 swcosa
- 3 _
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Figure 3.14: The Yaw displacement in a triangular TLP.
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3

7 D?
4
7D

=M, =C, p|+(

xSxH, 2 )+2(

3

7D

2

P xS x

4

4 9

j{ﬁDfJ S x pb?

3.3.3.5 Yaw Direction

1| #D? pb
I{—p—

—hc 4 2
M1 =M s =C, p

n 7Z'Dc2 —
T e
-hc 4 2

27Z'D§ ss
+ _—
4cosp 9

.

pb dz}+ 2

sin®

M. =C, 0

7 D3 [ sh? | x
4 6 | cosa

?ﬂDﬁ
s 4

HO

3 D3 xsin? Bdx

3

3

(Hfhc +hZH, +h?C+ HZn-n"H, +77_]
2
p

=0

4

CoS o
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Zxsin®a)

(3.263)

(3.264)

(3.265)

(3.266)



=M =C, p

2 2 2
(ZHDC (h, +77{_ pb] J_I_[EDC
4 3 4

(%pbjz(hc +

)

(3.267)

+( ZETDCZ(%IJZ(hC +77)J

ﬂD§£+ﬂD§£sin2a+2ﬂD§ pb® sin® B
4 12 4 12 cosa 4 9 cosa

The presence of off diagonal terms in the mass matrix indicates a contribution in
the added mass due to the hydrodynamic loading. The loading will be attracted only in
the surge, heave and pitch degrees of freedom due to the unidirectional wave acting in
the surge direction on a symmetric configuration of the platform about the x and z axes.
So added mass matrix will be as Eqn. (3.96) in section (3.2.3).

3.3.4 Structural Damping
Appling Eqgn. (3.7) in section (3.1.2.3) we get the mode shape as

Surge Heave Pitch Roll Sway Yaw
1 Vs 1 \ Vi, Viy
0 0 0 1 1 Vig
V = V1 1 V5 Vs V13 V19 (3.268)
0 0 0 \'A Vi, Vs,
V2 V4 V6 VlO V15 V21
0 0 0 V,, Vs 1
And the damping matrix will be
Cl C7 C13 C19 C25 C31
C2 C8 Cl4 C20 CZG C32
C — C3 C9 C15 C21 C27 C33 (3269)
C4 ClO C16 CZZ C28 C34
C5 Cll Cl? C23 C29 C35
C6 C12 C18 C24 C30 C36

It should be noticed that motions in all directions depend in each other contrary to
Jain, 2002.

100



3.3.5 Hydrodynamic Force Vector, {F (t)} on Triangular TLP

As shown in section (3.1.2.4) the hydrodynamic force attracted by the members
due to a uni-directional wave train in the surge direction {F (t)} is given by Eqgn. (3.8)
and The values of F21=F41=Fs1=0. Terms F11, F31 and Fs1 have values which can be

obtained as following

3.3.5.1 Surge Force F11
The horizontal surge force on the triangular TLP results from contributions from

horizontal forces on the hulls (pontoons) and vertical columns, Figure (3.8).

The inertia surge force on a single column located at distant x from the wave crest,
is obtained by Eqn. (3.101) so,

For columnsat X= _pr

Fl, +F1, =2px D xCp % g x%x sin((k x _;’b )- ot et —e ] (3.270)
For columnsat x= 2 X3Pb

Fl = px p4D°2 xC, x( x%x sin((k x 2PD )- ot Yo —e "] (3.271)

Also the drag surge force on a single column located at x from the wave crest is
obtained by Eqgn. (3.106).

—Pb
=X=— Fli, + Flys (3.272)
x=2P0 FF1,, (3.273)

So the total surge force on columns will be
=Fl.=F1,+FL +F1,+F1,, +Fl,+F1l,, (3.274)
The inertia surge forces are experienced only by the hull aligned normal to the

direction of wave propagation. Thus an inertia surge force varies only due wave action

on hull 1 and 2 and is obtained by
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SL

2 2
Fleo =1 5% P ”'jp Cn “’7 He " sin(kx— et )dy (3.275)
2
2 2
=Fl, = p%cm % He " sin(k(-Pb/3)—at)S, (3.276)
25p 2 2 -,
Fly +Fl,, =2f 3 ™20 @ He ok sin(kx— ot ) SN (3.277)
> 2 CoS o
2 a2
=2p s (o 9 Heox [—cos(k(2s, /3)—at)+cos(k(-s, /3)—at)] Sin_ (3.278)
4 2 Cos

Also the drag surge forces are experienced only by the hull aligned normal to the

direction of wave propagation. Thus drag surge force varies only on hull 1and 2 and is

obtained by
7+

5 [Tje

p _ —khg
L (d=h)e*™u,

—hok cos(kx—at)

U

Fldp3 =

ZH ok cos(kx— at

X

d
(d —h, )e™ U
d

)_+ Cdey

(ﬁje_h"k cos(k x(—Pb/3)—at)
1 T

2°d"p (d—h_ )e U

=>Fl;= + Od £-U,

x ?e‘“‘)k cos(k x(

2% 1

Flip +Flyp = 2.{% ECdPDP X 3 7

(d —h, )e U

_Pb/3)—awt)+ .

H 2o cos(kx— wt)

_ —kho
L (d=h)e™ U,

d
—2e™y,
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(3.279)
(3.280)
© _ U,lSL
a2
Sin adX
COS o
(3.281)



_aH e 0 3

— sin(kx—at) .
pUzhoe U o oy
d _~sb
3
So total surge force on hulls equal
= F1, =F1,;, +Fl, + F1_; + F1, +F1,, + F1,, (3.283)
Finally the total surge force F11
= F,, = F1, + F1, (3.284)

3.3.5.2 Heave Force F31:-
The vertical wave force on TLP results from several effects:

(1) The dynamic pressure at the bottom of the columns.
(2) The forces on the hulls.

(3) The change of the instantaneous waterline on the columns.

Effect of the dynamic pressure at the bottom of the columns can be obtained as
Egn. (3.120).

With further assumption that the columns diameter is small compared to the wave
length, so that the dynamic pressure can be assumed to remain constant across the bottom

surface. The vertical columns force can be obtained from Eqgn. (3.121).

:>x=_TPb:> F3,, +F3; (3.285)
x=%: F3. (3.286)
So total heave force on columns equal

= F3. =F1_, +Fl +F1, (3.287)
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The magnitude of vertical force, hull 3, is constant along the hull length and the

integration reduces to a simple multiplication. So, the inertia force is

SL 2 2
=~ 7D - _
F3p: =] %5 P 4P CmTHe "ok cos(kx— et )dy
2
m: . @,
= F3,;=—p 4P Cm7He "% cos(k(-Pb/3)-at)S,

(3.288)

(3.289)

The magnitude of vertical force, hulls 1 and 2, is varied along the hull length and

the integration reduces to a simple multiplication so the inertia force

25p 2 2 2
= D — @ —hak SIN" o
F3p +F3p, =2[ 3, p——C,, ——He ™ cos(kx—at) dx
p p > 4 2 Cos
2 a2
—2p™% ¢ 9 ek [sin(k(2s, / 3)—at)—sin(k(=s, / 3) -t )] &
4 2 CoOS

Also the drag vertical force on hull 3 will be

sy (?je_ ok sin(kx—at)
Iégcd pr (d h )e—khoU
2 + od c _Uv
F3is = "
—e " sin(kx—at)
X —kho dy
Jdohetu,
L d |
(ﬁje‘hok sin(k x(=Pb/3)—at)
1 T
ECdPDp d—h —khoU
+( ) )e c _UV
= F3,; = d

?e“ok sin(kx(—Pb/3)—wt)

SL

d

X _ —khg
L (d=h ey,

U

\

Also the drag vertical force on hulls 1 and 2 will be
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LAl sin(kx—at)

25 in2
F3, o1 T F34 p2 = 2[ 3, 1Cd,DDp iﬁ T kg Sin_ a dx (3.294)
- 2 3 +(d—ho)e U°—2e‘“‘°uv cosa
d
x=2%P
—7H o2 cos(kx—amt) 3
H4
- %Cdp P % T(d ~h )xe‘k“"LiJ( 5(':'285 (3.299)
+ ° ¢ —2xe"™U,
d =S
3
So total heave force on hulls equal
=>F3,=F3,; +F3,,, + F3;;3 + F334 + F34,, + F345 (3.296)
So the total heave force Fa:
= F,, = F3, +F3, (3.297)

3.3.5.3 Pitch Response Fs;

The pitching behavior of a triangular TLP is some what different from that of a free
floating body like a ship or a semi submersible. In the latter case the restoring moment is
provided by the action of emerged and immersed volumes around the water plane. In
contrast for a TLP, the pitch restoring moment is provided primarily by changes in the
tether tension due to elastic deformation. This effect outweighs, by far, the contributions
due to changes in column submergence. In strict senses, the pitching access is one about
which moment of all the forces (including elastic tether deformation) are zero. The tether
deformation, in turn, depends on the location of the pitching axis. Thus, explicit solution
for the location of the pitch access is not possible. Here, it would be assumed that the
pitch access is at the level of the connection of the tethers to the columns (kirk and Etok,
1979). The contribution to pitching moment come from four sources:

1) The horizontal acceleration on all vertical columns.

2) The horizontal acceleration on hulls aligned normal to the direction of wave
propagation.

3) The vertical acceleration of the wave particles on hulls 1, 2 and 3.

4) The dynamic pressure variation on the bases on the three corner columns.
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The horizontal force on hulls 3 produces a pitch moment. This is obtained by

multiplying the horizontal force with the lever, measured from the pitching axis as:

For inertia force

MH,; =

= MHip3

SL
2
,SL
2

MH,, + MH,

ipl

{_2

Mjgc gHe‘h°[ cos(k(2s,/3)—awt)+cos(k(—s,/3)—awt)]H, } (3.301)

2 2
”'Z C, “; He ™" sin(kx—at )(—H,,. )dy
7zD2 *

% D2

n PC, 5 ——He ™ sin(k(-=Pb/3)—at)H, S,

,=2[ 3p 4PC 7He‘hok sin(kx— ot )(—H,,,

3

Also for drag force

MHde =

MH 5 =

I

X . —kho om
L (d=h)e*u,

\,\,‘w

H o cos(kx—wt )+

(?je_h‘)k cos(kx—at)

D
d”~p h et
L (d=h,)e ™y, U,
d
(d-h)e U,
d

EC
L2

(?je_ hok cos(kx(—Pb/3)—at)

D
dp p _ —kho
L h(,;e Uy

e cos(kx(—Pb/3)—awt)

H,.SL

UX
d

H 200 cos(kx— wt)

(d —h, )e™ U,

3 d
—2e™y,
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)dx

x—H

om

(3.298)

(3.299)

(3.300)

(3.302)

(3.303)

(3.304)



N
w | n
o

—2khg
. y ?e sin( kx— at)
=|3CarD, - (Hop) o et (3.305)
yUdzhoxe U oy
d —sb
3
So total surge pitching moment on hull is

MH, = (MHdpl +MHy, +MH ; +MH,, + MH,, + MHip3) (3.306)

The inertia surge pitching moment on a single column located at x from the wave

crest, is obtained by Eqgn. (3.149) so,

- x:—%b—> MH,, + MH, (3.307)
x=2P L MH (3.308)

Also for drag force pitching moment on columns can obtain from Eqn. (3.154) so,

:x:—%ba MH,, + MH

(3.309)
X= 2—Pb — MH
So total horizontal pitching moment on columns will be
MH, = (MHiC4 +MH,. +MH, +MH_ , +MH . + MHM) (3.310)
So total surge moment on TLP will be
MH =MH_+MH, (3.311)

For calculating vertical pitch moment on hulls first, consider hulls 1 and 2 aligned

along the direction of wave propagation. The pitching moment on these hulls is given as

44 2 (22-H , sin «
MV, +MV,, =|2— D e ° cos (kx—at )x—xdx 3.312
ipl ip2 { 4 pCm P JL% 2 @ ( 9 )X :| cos a ( )
— 1 _ _ 73 -2
_ ZZDS,OCm—Ha)ze"‘“O {xsm(kx a)t)+COS(kX2 a)t)} sin’ a (3.313)
4 2 k k s COSr

3

107



i Zsb 2sh i
((kf) a)t)

+

Z%Di’) Cn %wzekho 23;(

P02
_ cos((k?)—a}t) sin“ « (3.314)
+ 2 oS &
=0 Gin(k =2y at) cos((k =) at)
.3 3 _ 3
( k k?

Next, consider the effect of the vertical acceleration on hull 3. This hull is parallel
to the Crestline, and the force per unit of length is constant along the length of the hull.
The pitch moment is obtained by multiplying the vertical force, derived for heave

excitation, by the lever distance from the centerline so the inertia moment on these hulls

will be:
SL 2 2
MV, SLp%Cm “_ He ™" cos(kx— at )xdy (3.315)
2
D3 _ b
= MV, =—p 4Pc . 9 e cos(k(—Pb/3)— at) PP p (3.316)

Also for drag vertical pitch moment on hulls

[ sL —kho ]
st AH) —hk . (d—h )e*™U
2 - o) _ 0 c _
j_;LECdprK T Je sin(kx—at )+ r UV} (3.317)
W= i d —h, )e U
x| ——e ok sin(kx—a)t)+( — °3e ¢ - U,|-xdy
(ﬂje_h"k sin(kx(—Pb/3)—-wt)
1 T
>CqA, "
Pl (d=h,)e™™u, U,
= MV, = d (3.318)
Z e sin(kx(—Pb/3)—t)
pb
“l (d=h je*ou b3y
+( Od C _ Uv
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alp sin(kx—at)

2Sp —kh =2
21 4o0H| (d-h )e™U sin“
MV, . +MV,, =2 3 =C pD, — + = ¢ —X dx
dpl dp2 J.—st 5 aPYp 3 7 q x coS a (3.319)
—2e" MU,

7zHeZkho[—xcos(kx—a)t)+sin(kx—a)t)} s

4 oH| T k k? —sin?
- Zc, oD, =

3 7|, (d=h)x’e™™U, 2x%™ cosa

+ —
> ;Y | (3.320)
3
So total heave pitching moment on hull will be

MV, = (MV,, + MV, + MV, + MV, + MV, + MV, ) (3.321)

For calculating vertical pitch moment on columns, the exposed base of the corner
columns of the triangular TLP experience a hydrostatic pressure which has no
contribution to the pitch moment, when the integration is taken to the still waterline.
However, there is a dynamic pressure variation due to the passage of the waves whose
net contribution is non zero. The associated pitching moment arising from this is given
by Eqgn. (3.172).

= x:—%b—> MV,, + MV,

oph (3.322)
X=———>MV,

So total heave pitching moment on columns will be

MV, =(MV,, + MV_, + MV,,) (3.323)
So total heave pitching moment on TLP will be

MV =(MV, +MV,) (3.324)
So total pitching moment on TLP will be

Fy =(MV +MH) (3.325)
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3.4 Solution of the Equation of Motion in the Time Domain

Wave loading constitutes the primary loading on offshore structures.

The equations of motion of these structures are coupled and nonlinear as following
[MH{x"(t+at)}+ [c X (t+Aat)}+ [KI{x(t+4t)}={F (t+4t)} (3.326)

The right hand side of Eqn. (3.326) is nonlinearly coupled, because of the presence
of structural displacement, velocity and acceleration.

Therefore, the force vector should be updated each time step to account for the
change in the tether tension. To achieve this response variation a time domain analysis is
carried out for this purpose. Newmark's £ time integration procedure is used in a step
wise manner.

The velocity and displacement at time (t+At) can be expressed as
X(t+4t)=x"(1)+[(1—p)Aat]x™" (1) + y(At)x*(t + 4t) (3.327)
X(t+A4t) = [x(t)+(At)x' +[(0.5=8)(At)* Ix"(t)+ [ B(At)* ]x™(t + At )] (3.328)

The parameters # and )/ define the variation of acceleration x** over time step At

and determine the stability and accuracy characteristics of the method. Typical selection
for y is %and % <p s% is satisfactory from all points of view, including accuracy.
The two special cases of Newmark's method that are commonly used are:
1) Average acceleration method in which the value of » is% , B = %where, this
method is unconditionally stable.
2) Linear acceleration method in which the value of » is% , p= %where, this

method is conditionally stable. The method of average acceleration will be used
in this study.

The procedure of this method is summarized as solving Eqgn. (3.328) for x**(t + At)
in terms of X (t + At)and then substituting for x**(t+ At) into Eqn. (3.327) we obtain
equations for x**(t+ At) and x*(t + At), each in terms of unknown X(t + At) only. These

two relations for x*(t + At) and x™(t+ At) are substituted into Eqgn. (3.326) to solve for
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X (t+ At)after which, using Eqn. (3.327) and Eqgn. (3.328), x™(t+At) and Xx"(t+At)

can also be calculated at each step. The following values are updated
a) The stiffness coefficients which varies with tether tension,
b) The added mass which varies with sea surface fluctuations,
c) The evaluation of wave forces at the instantaneous position of the displaced
structure,

d) The surge induced heave response.
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Chapter 4

CASE STUDY

4.1 Introduction

This chapter discusses the responses of the square and triangular TLPs due to a
unidirectional wave in the surge direction. Main response parameters are shown as
follows

1) Surge, heave and pitch responses of square TLP due to a unidirectional wave in
the surge direction.

2) The change in tension in tether for square tension leg platform subjected to surge
hydrodynamic force for different wave heights and wave periods.

3) The surge, heave and pitch responses of a triangular TLP due to a unidirectional
wave in surge direction.

4) The change in tension in tether for triangular tension leg platform subjected to

surge hydrodynamic force for different wave heights and wave periods.

In this numerical study the two test models are the same in the sense that they have
the same weight and total tension force and the same draft length and overall dimensions.
However, different columns and pontoon diameters were estimated to fix the same draft

length as following

D D

r(square = r(triangle (41)
= 4F,
(prﬂ' - Dg(squares)/ Dcz(square = (%ﬁ - Ds(triangle)s)/ Dcz(triangle) (42)
assume;
D, =2D, (4.3)

where; the weight of the platform and the total tension force in tethers will be the
same for square and triangle TLPs. So total buoyancy force (Fg) is the same for both,

also both have the same length. So (S) is the same for both platforms. Also when we
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design TLP, we assume that columns diameter is twice the pontoon diameter in both of

square and triangle TLP so that when we put this into considersion we find that

Dc2 [4Dr +3S ]Square= 75Dc2 [4Dr +3S ]triangle

2
Dc(square)
D2

p(square)

The forgoing model properties are different than those of Chandrasekaran and Jain,

2002a; 2002b where they assumed that both models have the same weight and dimension

which is questionable.

=.75D;
=.75D?

c(tringle)

p(tringle)

(4.4)
(4.5)
(4.6)

Table 4.1: Geometric properties of the square TLP and load data

Water properties

Platform properties

Gravity acceleration . Center of gravity above
9.81 Platform weight (KN),W 280000 6.03
(m/sec?) the sea level (m), Hc
Water weight density Tether stiffness
10.06 Platform length (m), 2a 66.22 80000
(KN/m?3) (KN/m),y
Inertia coefficient, Cn, 2 Platform width (m), 2b 66.22 Tether length (m), L 569
. . Platform radius of
o Platform radius of gyration o o
Drag coefficient, Cq 1 . . 32.1 gyration in y-directions | 32.1
in x-directions (m), rx
(m), ry
Current velocity Platform radius of gyration
0 . o 33 Water depth (m),d 600
(m/sec),Uc in z-directions (m), r,
8, 10, .
. Diameter of pontoon
Wave period (sec), T 125, Tether total force (KN), Ty 160000 (), D 9.03
m 1
and 15 i
) 8,10 Diameter of Draft(m),Dr 31
Wave height (m), H 18.06
and 12 [ columns (m), D¢
Damping ratio, ¢ 5%
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Table 4.2: Geometric properties of the triangular TLP and load data

Water properties

Platform properties

Gravity acceleration . Center of gravity above
9.81 Platform weight (KN),W 280000 6.03
(m/sec?) the sea level (m), Hc
Water weight density Tether stiffness
10.06 Platform length (m), PI 66.22 80000
(KN/md) (KN/m),y
Inertia coefficient, Cry 2 Tether length (m), L 569
. ) Platform radius of
. Platform radius of gyration L L
Drag coefficient, Cq 1 . L 32.1 gyration in y-directions 32.1
in x-directions (m), ry
(m), ry
Current velocity Platform radius of gyration
0 ) L 33 Water depth (m),d 600
(m/sec),U; in z-directions (m), r,
8,10, .
. Diameter of pontoon
Wave period (sec), T 125 Tether total force (KN),T¢ 160000 (M), D 11
m 1
and 15 i
) 8,10 Diameter of Draft(m),D, 31
Wave height (m), H 20
and 12 columns (m), D¢
Damping ratio, { 5%

Table 4.3: Calculated natural structural periods for different analysis cases (in seconds) for the four-legged

tension leg platforms

DOF
Analysis Case -
Surge Sway Heave Roll Pitch Yaw
Coupled 97.099 97.099 2.218 3.126 3.126 86.047
Uncoupled 97.067 97.067 2.218 3.125 3.125 86.047

Table 4.4: Calculated natural structural periods for different analysis cases (in seconds) for the three-legged

tension leg platforms

DOF
Analysis Case -
Surge Sway Heave Roll Pitch Yaw
Coupled 97.2453 97.2549 2.4913 2.9978 3.0521 62.7296
Uncoupled 97.2057 97.2057 2.5262 3.3773 3.3893 62.9697
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Figure 4.1: Layout of the studied square TLP case.
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4.2 Discussions

A numerical scheme was developed using MATLAB software where solution
based on Newmark's beta method was obtained. A major concern was about the effect of
the coupling of degrees of freedom and about its role in influencing response behaviors.
Thus, numerical studies for evaluating the coupled and uncoupled responses of the
square and triangular TLP under regular waves have been carried out. Coupling of
various degrees-of-freedom was taken into consideration by considering the off-diagonal
terms in stiffness matrix [K]. On the other hand, these off-diagonal terms were neglected
to study the uncoupling effect. Wave forces were taken to be acting in the direction of
surge degree-of-freedom. The geometric properties of the square and triangular TLP are
shown in Figures 4.1 and 4.2 respectively. Moreover, the geometric and hydrodynamic
data considered for force evaluation are given in Table 4.1 and table 4.2, respectively
(Jain, A. K., 1990).

Tables 4.3 and 4.4 show the coupled and the uncoupled natural time periods of
square TLP and triangular TLP, respectively. It is seen that coupling has insignificant
effect on natural time periods. It is also observed that TLPs have very long period of
vibration associated with motions in the horizontal plane (say 60 to 100 seconds). Since
typical wave spectral peaks are between 6 to 15 seconds, resonant response in these
degrees of freedom is unlikely to occur.

The natural periods in vertical plane in heave, roll and pitch are observed to be in
the range of 2 to 4 seconds which is consistent with typical TLP's. While this range is
below the periods of typical storm waves, everyday waves do have some energy in this
range (the lowest wave period for most geographical locations is about 3 seconds). Thus,
wave—excited vibrations can cause high-cycle fatigue of tethers and eventually instability
of the platform. One alternative to this problem is to increase the moored stiffness as to
further lower the natural periods in heave, roll and pitch movement. The other alternative
is to install damping devices in the tethers to mitigate vertical motion.

Time histories of the coupled and the uncoupled responses are shown in Figures.

4.3 t0 4.13. Before going into detailed discussion for each response it is clear from the
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figures that for squared TLP, the coupling has no effect on response in the surge and
heave directions where, it has negligible effect on pitch direction. On the other hand, for
triangular TLP, while coupling has a non significant effect on the surge, the heave, and
tether tension force, it has a significant effect on the pitch response in which ignoring the

coupling effect will lead to overestimation of the pitch response.

4.2.1 Response for Square TLP
4.2.1.1 Surge Response

The time histories of the surge responses for the square TLP are shown in Figure
4.3. It is observed that, for a specific wave period, the amplitude of oscillations increases
as the wave height increases. Moreover, for short wave periods (up to 10 sec), the system
responds in small amplitude oscillations about a displaced position that is inversely
proportional to the wave period and directly proportional to wave height. On the other
hand, for relatively long wave period (12.5 or 15 sec.), the system tends to respond in
high oscillations amplitude about its original position. The amplitude of oscillations
increases with the increase in the wave period, which is expected because as the wave
period increases, it becomes closer to the surge period of vibration (about 97 sec.).
Moreover, the effect of wave height becomes more pronounced for shorter wave periods.
In all cases, the surge response seems to have periodic oscillations that have the same
exciting wave period. Finally, the transient state takes about 40-80 seconds where the

stationary state begins.

4.2.1.2 Heave Response

The time histories of the coupled and the uncoupled heave responses for the square
TLP are shown in Figure 4.4. As expected, the response in the heave direction has very
small values compared to that of the surge direction. This is attributed to the relatively
high stiffness of the tethers in this direction together with the fact that the excitation is
indirect in this case. Moreover, the heave response is directly proportional to the wave

period and to a less extent to wave height. Also, the transient state takes about 10

118



seconds where the stationary state begins and the motion is almost periodic. The heave

response appears to have a mean value of nearly zero.

4.2.1.3 Pitch Response

The time histories of the coupled and the uncoupled pitch responses for squared
TLP are shown in Figure 4.5. It is clear that as the wave period increases the response
becomes closer to being periodic in nature. For short wave periods (less than 10 sec.), a
higher mode contribution to the response seems to take place. For long wave periods
(12.5 and 15 sec.), the higher mode contribution vanishes after one or two cycles and we
have a one period response (wave period) as in the surge and heave cases. Moreover, the

transient state takes about 20 seconds before the stationary state begins.

To get an insight into the behavior for the short wave period cases, the response
spectra for wave height of 8.0 m and wave period of 6, 8, and 10 sec was obtained and
the results are shown in Figure 4.6. Clearly there are three distinct peaks. These are the
exciting wave period, a period doubling case in which the spectra have peaks at half the
exciting wave periods, and a third peak that is at about one third of the exciting wave
period. This particular peak may indicate contribution of the pitch mode of vibration
(about 3.1 sec.).

4.2.1.4 Tether Tension Force Response

The time histories of the tether tension force responses for the square TLP are
shown in Figure 4.7. It is observed that, for a specific wave period, the amplitude of
forces increases as the wave height increases. Moreover, for short wave periods (less
than 10 sec), the forces oscillate about a non zero mean value that is inversely
proportional to the wave period and directly proportional to wave height. On the other
hand, for relatively long wave period (12.5 or 15 sec.), the forces tend to oscillate about a
nearly zero value. The effect of wave height is observed to be more pronounced for

shorter wave periods.
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Lastly, to gain a conceptual view of the stability and periodicity of the dynamic
behavior of the structure, the phase plane for wave periods of 10 and 15 sec are plotted in
Figure 4.8. It is observed that the steady state behavior of the structure is periodic and

stable.
4.2.2 Response of Triangular TLP
4.2.2.1 Surge Response

The time histories of the surge responses for the triangular TLP are shown in
Figure 4.9. It is observed that, for a specific wave period, the amplitude of oscillations
slightly increases as the wave height increases. Moreover, for short wave periods (up to
10 sec), the system responds in small amplitude oscillations about a displaced position
that is inversely proportional to the wave period and directly proportional to wave height.
On the other hand, for relatively long wave period (12.5 or 15 sec.), the system tends to
respond in high oscillations amplitude about its original position. The amplitude of
oscillations increases with the increase in the wave period, which is expected because as
the wave period increases, it becomes closer to the surge period of vibration (about 97
sec.). Moreover, the effect of wave height becomes more pronounced for shorter wave
periods. In all cases, the surge response seems to have periodic oscillations that have the
same exciting wave period. Finally, the transient state takes about 140-160 seconds for
short wave period (6 and 8 sec); whereas it takes about 80 sec for longer wave periods.
After that the stationary state begins. Finally, it is observed that coupling has
insignificant effect on the surge response. This is attributed to the fact that the loading is

symmetrical in this case.

4.2.2.2 Heave Response

The time histories of the coupled and the uncoupled heave responses for the
triangular TLP are shown in Figure 4.10. As expected, the response in the heave
direction has very small values compared to that of the surge direction. This is attributed
to the relatively high stiffness of the tethers in this direction together with the fact that the

excitation is indirect in this case. Moreover, the heave response is directly proportional to
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the wave period and to a less extent to wave height. Also, the transient state takes about
10 seconds where the stationary state begins and the motion is almost periodic.
Contribution from heave degree of freedom seems to take place. Finally, coupling seems
to have a minor effect on the response of the TLP.

4.2.2.3 Pitch Response

The time histories of the coupled and the uncoupled pitch responses for triangular
TLP are shown in Figure 4.11. It is clear that coupling has a significant effect on the
pitch response. This is due to the fact that the structure is not symmetrical in this
particular response where two legs exist at the left hand side while only one leg exists at

the right hand side. The uncoupled response overestimates the values the pitch response.

It also observed that as the wave period increases the response becomes closer to
being periodic in nature. For short wave periods (less than 10 sec.), a higher mode
contribution to the response appears to take place. For long wave periods (12.5 and 15
sec.), the higher mode contribution vanishes after one or two cycles and we have a one
period response (wave period) as in the surge and heave cases. Moreover, the transient
state takes about 10 seconds before the stationary state begins. Finally, as the wave
period increases, the pitch response decreases. This behavior is more pronounced in the

coupled case.

4.2.2.4 Tether Tension Force Response

The time histories of the tether tension force responses for the triangular TLP are
shown in Figure 4.12. It is observed that, for a specific wave period, the amplitude of the
forces increase as the wave height increases. Moreover, for short wave periods (less than
8 sec), the transient state exhibits high tension forces in the tethers. This force is
inversely proportional to wave period and directly proportional to wave height. On the
other hand, for relatively long wave period (12.5 or 15 sec.), the forces become very
smaller and have a mean value of nearly zero. Moreover, the effect of wave height is

more pronounced for shorter wave periods. Finally, the transient state takes about 160
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seconds for short wave period of 6 sec. it reduces significantly to 60 sec for wave period

of 8 sec. for longer wave periods the transient state vanishes after less than 20 sec.

Lastly, to gain a conceptual view of the stability and periodicity of the dynamic
behavior of the structure, the phase plane for wave periods of 10 and 15 sec are plotted in

Figure 4.13. It is observed that the steady state behavior of the structure is periodic and
stable.
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Figure 4.3. Surge response of square TLP for (a) wave period = 8 sec; (b) wave period = 10 sec;
(c) wave period = 12.5 sec; (d) wave period = 15 sec.
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Figure 4.4. Heave response of square TLP for (a) wave period = 8 sec; wave period = 10 sec; (c) wave period = 12.5
sec; (d) wave period = 15 sec.
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Figure 4.5. Pitch response of square TLP for (a) wave period = 8 sec; (b) wave period = 10 sec; (c) wave
period = 12.5 sec; (d) wave period = 15 sec.
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Figure 4.12. Tether tension force response of triangular TLP for (a) wave period = 8 sec; (b) wave period = 10 sec;

(c) wave period = 12.5 sec; (d) wave period = 15 sec.
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Chapter 5

CONCLUSIONS AND RECOMENDITIONS

5.1 Introduction

The present study investigates the dynamic response of square and triangular TLP
under hydrodynamic forces in the surge direction considering all degrees of freedom of
the system. A numerical dynamic model for the TLP was written where Morison’s
equation with water particle kinematics using Airy’s linear wave theory was used. The
scope of the work was to accurately model the TLP system considering added mass
coefficients and nonlinearity in the system together with the coupling between various
degrees of freedom. Results for the time histories for the affected degrees of freedom

have been presented.

The TLP can be modeled as a rigid body with six degrees of freedom, which
can be conveniently divided into two categories: those controlled by the stiffness of
tethers, and those controlled by the buoyancy. The former category includes motion
in the vertical plane and consists of heave, roll and pitch; whereas the latter
comprises the horizontal motions of surge, sway and yaw. The natural periods of
motion in the horizontal plane are high, whereas in the vertical plane the periods are
low. Generally, the surge motion is predominantly high for head seas due to the
combined actions of wind, waves and currents. However, due to coupling among
various degrees of freedom and relatively low damping of hydrodynamic origin in
the vertical plane motion, a complete analysis of a six degree-of-freedom system

subjected to wind, waves and currents is desirable.
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5.2 Conclusion

Based on the results shown in this thesis, the following conclusions can be drawn:

a) For Square TLP

b)

Coupling between various degrees of freedom has no effect on the surge or the

heave responses, and has an insignificant effect on the pitch response.

TLP's have very long period of vibration (80 to 100 seconds) associated with
motions in the horizontal plane, surge, sway and yaw. Since typical wave spectral
peaks are between 6 to 15 seconds, resonant response in these degrees of freedom

is unlikely to occur.

For short wave periods (less than 10 sec.), the surge response consists of small
amplitude oscillations about a displaced position that is inversely proportional to
the wave period and directly proportional to wave height. On the other hand, for
relatively long wave period (12.5 or 15 sec.), the system tends to respond in high

oscillations amplitude about its original position.

The heave response is directly proportional to the wave period and to a less extent

to wave height.

For short wave periods (less than 10 sec.), a higher mode contribution to the pitch

response accompanied by period doubling appears to take place.

The phase plane shows that the steady state behavior of the structure is periodic

and stable.

For Triangular TLP

While coupling has a non significant effect on the surge, the heave, and tether
tension force, it has a significant effect on the pitch response in which ignoring

the coupling effect will lead to overestimation of the pitch response.
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TLP's have very long period of vibration (60 to 100 seconds) associated with
motions in the horizontal plane, surge, sway and yaw. Since typical wave spectral
peaks are between 6 to 15 seconds, resonant response in these degrees of freedom

is unlikely to occur.

For short wave periods (less than 10 sec), the system responds in small amplitude
oscillations about a displaced position that is inversely proportional to the wave
period and directly proportional to wave height. On the other hand, for relatively
long wave period (12.5 or 15 sec.), the system tends to respond in high

oscillations amplitude about its original position.

The heave response is directly proportional to the wave period and to a less extent

to wave height.

For short wave periods (less than 10 sec.), a higher mode contribution to the pitch
response appears to take place. For long wave periods (12.5 and 15 sec.), the
higher mode contribution vanishes after one or two cycles and we have a one

period response (wave period) as in the surge and heave cases.

For short wave periods (less than 10 sec), the transient state exhibits high tension
forces in the tethers. On the other hand, for relatively long wave period (12.5 or

15 sec.), the forces become very smaller and have a mean value of nearly zero.

The phase plane shows that the steady state behavior of the structure is periodic

and stable.

The heave response will be highly underestimated if the coupling effect between

various degrees-of-freedom is ignored in the analysis of TLP.

While the general trend of the square and triangular TLP is similar, the triangular

TLP response is generally higher than the square TLP.
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5.3 Recommendations

It is recommended that a further study should take place considering the following
1. Irregular wave models.
2. Higher older wave models.
3. Oblique wave direction.
4. TLP with wind turbine to study the behavior of coupled system and its
stability due to the exerted force from the wind turbine. So we can view

the feasibility of this coupled system for producing clean rentable energy

(electricity).
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APPENDIX A
Newmark's p method

The algorithm based on Newmark's B method for solving the equation of motion is given
below:

First : initial calculations

Step 1. Calculate the stiffness matrix [K], the damping matrix [C], the mass matrix [M],
the initial displacement vector {X,}, and the initial velocity vector {X'o} is given as the
known input data.

Step 2. The force vector {F (t)} is calculated.

Step 3. The initial acceleration vector is then calculated as

(M} ={F O} - KX} - [k, Hx } = {0

Step 3. Select the time step At

Step 5. Calculate the method coefficients as
4 4
[a]= Kt[m] +2[c].[a,]=2[m] &, = AT ST A

second : calculations for each time step

step 6. Calculate the new stiffness matrix[E] and the new force {F(t + At)}

Step 7. Calculate the difference in force. {AF}
{AF}={F(t+A)}—{F[®O}
Step 8. Calculate {AAF}:{AF}+[a1]{x;}+[az]{x;'}
Step 9. Calculate the tangent of stiffness matrix
[K] = [K]+ag[c] + a,[m]
Step 10. Solve to get the difference in displacement as
{03 =[KI*{AF}
Step 11. Then we can get the difference in velocity {Ax"}and acceleration {Ax*} as

{AX} = a{Ax} - 2{x" ()}
A"} = a,{AG—a,{x" (1)} - 2{x" ()}
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Step12. Now we can get the new displacement{x(t + At)}, velocity {x"(t + At)}and

acceleration {x** (t + At)}as

{x(t+ At} ={x®)F+{Ax()}

{¢t+Aan}={x"()}+{Ax" (1)}

Tt +ADF={x"OF+{Ax" ()}

Step13. Repetition for the next time step. Replace t by (t + At) and implement steps 6 to

12 for the next time step
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APPENDIX B

Program flow chart

[ Start

!

Calc. the stiffness matrix [K], the damping
matrix [C], the mass matrix [M], the initial
displacement vector {Xo}, the initial velocity
vector {X'o} The force vector {F (t)} ,time step

At ,and method coefficients as:

[a,] = %[m] +2[c] [a,] = 2[m],
4 4 2
Q=—73,8,=—,85=—
At At At

!

Calc. the initial acceleration vector

[m1{G 3 ={F (O} =[]} - [k, X .} =%}

<&
<«

Calc. the new stiffness matrix[k] and the new
force {F(t+ At)}

Calc. the difference in
force{AF}={F(t+At)}—{F(t)}

!

Calc. the modified difference in

force {AF} = {AF}+[a, {3+ [a, X"}

T=t+At

|
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l

Calc. The tangent of stiffness

matrix[k] = [k] + a [c]+a,[m]

A 4

Get difference in displacement {AX} = [Iz]’l{AAF}

A 4

Get the difference in velocity {Ax"}and

acceleration {Ax*}

2 VX 3= a{ A= 2AX (0}
AT} = a,{AG—a,{x" ()} - 2{x" (O}

A 4

Get the new displacement{x(t + At)}, velocity
{x*(t + At) }and acceleration {x* (t + At)}as
{x(t+ At} ={x®)}+{Ax(1)}
{(t+An}={x"()}+{Ax" (1)}

X (E+ A ={x" (O} +{Ax" (1)}

v
[ End
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