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         ABSTRACT 
 

Among compliant platforms, the tension leg platform (TLP) is a hybrid structure 

which is generally used for deep water oil exploration.  With respect to the horizontal 

degrees of freedom, it is compliant and behaves like a floating structure moored by 

vertical tubular members or “tethers”.  These tethers are pretensioned due to the excess 

buoyancy of the platform, whereas with respect to the vertical degrees of freedom, it is 

stiff and resembles a fixed structure and is not allowed to float freely. 

Dynamic analysis of squared and triangular TLP models under regular waves is 

presented, considering the coupling between surge, sway, heave, roll, pitch and yaw 

degrees of freedom. The analysis considers various nonlinearities produced due to 

change in the tether tension and nonlinear hydrodynamic drag force. The wave forces on 

the elements of the structure are calculated using Airy’s wave theory with Chakrabarti 

(1971) approaches and Morison’s equation, ignoring the diffraction effects. The 

nonlinear equation of motion is solved in the time domain using Newmark’s beta 

integration scheme.  

Numerical studies are carried out in the time domain to examine the effect of 

change of wave parameters (wave height and wave period) and coupling effect in 

dynamic response of a square and a triangular TLP under a unidirectional surge wave 

force. Also, Numerical studies are conducted to compare the coupled response of a 

triangular TLP with that of a squared TLP and the effects of different parameters that 

influence these responses are then investigated. Computer MATLAB program is 

developed in this work for nonlinear dynamic analysis for both triangle and squared TLP.     

The program is capable of solving large displacement problem dynamically in the time 

domain. 



 

 

 

 

 

v 

 

ACKNOWLEDGEMENTS 
 

I would like to express my gratitude, respect and great appreciation to my 

supervisor, Dr. Ashraf M. Abou-Rayan, for his guidance, support and kindness. He has 

always been available to aid me in one way or another when difficulties seem 

insurmountable. It is such a great privilege to work under his supervision and to have 

him as my "academic father", who allowed me much freedom in defining the overall 

scope of this work, and yet, at the same time offered continued support, ideas and 

encouragement. 

The same gratitude and appreciation is also due to my co-supervisor, Dr. Ayman A. 

Seleemah, for his support and kindness. His unique, cheerful way of teaching and 

conducting research has always been a source of inspiration. 

Many useful and stimulating discussions with, my advisors played a role in the 

final  development of  the  numerical models used  in this  thesis, and  to them I owe my  

appreciation. 

I am indebted to my brother, Eng. Mohammed Ramadan for his assistance in the 

development in some of computer programs. 

Finally, to my family, I owe great thanks, for their help in typing part of the 

manuscript, and particularly for their support and understanding. 

. 

Amr Ramadan Ibrahim Ali 

Benha University, H.I.T, Egypt 

April 2011 



 

vi 

CONTENTS 
Page 

Abstract    .........................................................................................................................  iv 

Acknowledgements    ........................................................................................................  v 

Contents    .........................................................................................................................  vi 

List of Figures    ...............................................................................................................  ix 

List of Tables    ................................................................................................................  xii 

Nomenclature    ..............................................................................................................  xiii 

Abbreviation  .................................................................................................................  xix 

Chapter 1:   Introduction    ..............................................................................................  1 

1.1 Introduction .......................................................................................................... 1 

1.2 Platform Types ....................................................................................................  2 

1.2.1 Platform Function  ........................................................................................ 3 

1.3 Platform Structural Types ...................................................................................  4 

1.3.1 Fixed Offshore Platforms  ............................................................................ 6 

1.3.2 Compliant Offshore Platforms   ................................................................... 8 

1.3.3 Mobile Offshore Platforms  ....................................................................... 10 

1.4 Literature Review ..............................................................................................  17 

1.5 Aim of this Thesis .............................................................................................  25 

1.6 Organization of Dissertation  ............................................................................  25 

Chapter 2:  Hydrodynamic Loads    .............................................................................  27 

2.1 Introduction .......................................................................................................  27 

2.2 Theory of Linearized Gravity Waves ................................................................  28 



 

vii 

2.3 Surface Elevation Modification .........................................................................  36 

2.4 Wave Force ........................................................................................................  39 

2.4.1 Wave Force Regimes  ................................................................................ 40 

2.4.2 Morison Equation  ...................................................................................... 41 

2.4.3 Modified Morison Equation ....................................................................... 44 

2.4.4 Modified Morison Equation for Inclined Cylinder  ................................... 46 

Chapter 3:   TLP Dynamic Analysis    ..........................................................................  48 

3.1 Introduction ........................................................................................................  48 

3.1.1 Structural Idealization and Assumptions  .................................................. 49 

3.1.2 Mathematical Model of TLP ...................................................................... 50 

3.2 Development of a Rectangular tension leg platform ..........................................  56 

3.2.1 Draft Evaluation  .......................................................................................  56 

3.2.2 Stiffness Matrix of the Rectangle TLP Configuration ..............................  56 

3.2.3 Mass Matrix, [M]  ...................................................................................... 68 

3.2.4 Structural Damping .................................................................................... 73 

3.2.5 Hydrodynamic Force Vector, {F (t)} on Rectangular  ............................... 73 

3.3 Development of a triangular Tension Leg Platform ..........................................  83 

3.3.1 Draft Evaluation  ........................................................................................ 83 

3.3.2 Stiffness Matrix of the Rectangle TLP Configuration ............................... 83 

3.3.3 Mass Matrix, [M]  ...................................................................................... 95 

3.3.4 Structural Damping .................................................................................  100 

3.3.5 Hydrodynamic Force Vector, {F (t)} on Rectangular  ............................. 101 

3.4  Solution of Equation of Motion in Time Domain analysis .............................  110 



 

viii 

Chapter 4:   Case Study  ..............................................................................................  112 

4.1  Introduction .....................................................................................................  112 

4.2   Result and Discussions .....................................................................................  117 

4.2.1 Response of Square TLP ............................................................................ 118 

4.2.2 Response of Triangular TLP .....................................................................  120 

Chapter 5:   Conclusions and Recommendations  .....................................................  134 

5.1 Introduction .....................................................................................................  134 

5.2 Conclusions .....................................................................................................  135 

5.3 Recommendations ...........................................................................................  137 

References    ..................................................................................................................  138 

Appendix A: Newmark's β method .............................................................................  143 

Appendix B: Program Flow Chart    ..........................................................................  145 

Vita    ..............................................................................................................................  147 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

ix 

LIST OF FIGURES 

Page 

Figure 1.1:  1,2) Conventional fixed platforms; 3) compliant tower; 4,5) Vertically             

moored tension leg and mini-tension leg platform; 6) Spar; 7,8) Semi-

submersibles; 9) Floating production, storage, and offloading facility; 10) 

Sub-sea completion and tie-back to host 

facility.(www.mms.gov).................................................................................  5 

Figure 1.2: The scheme of steel jacket platform (www.mms.gov) ..................................  11 

Figure 1.3: The scheme of steel tower platform (www.mms.gov) ...................................  12 

Figure 1.4: The scheme of steel gravity platform (www.paroscrennc.com) ....................  13 

Figure 1.5: The scheme of concrete gravity platform (www.ogp.org.uk)…………….......    13 

Figure 1.6: The scheme of free standing tower (www.offshore-technology.gov) ............  14 

Figure 1.7: The scheme of guyed tower (www.offshore-technology.gov) .......................  14 

Figure 1.8: The scheme of tension leg platform ...............................................................  15 

Figure 1.9: The scheme of drilling ships (www.offshore-technology.gov) ......................  16 

Figure 1.10: The scheme of jack-ups 

(http//community.webshots.com/album/126570186zwqfus) ............................................  16 

Figure 1.11: Six degree of freedom of offshore structure ................................................  17 

Figure 2.1: The wave propagation for linear wave theory ...............................................  35 

Figure 2.2: The ranges of suitability for various theories ................................................  35 

Figure 2.3: The comparison of vertical distribution of horizontal water particle 

velocity for (A) Airy which is limited to MWL,(B)Extrapolation of 

linear wave theory,(C) Stretching of linear wave theory and (D) 

Modified linear wave theory "Chakrabarti" ..................................................  37 

http://www.mms.gov).................................................................................6/
http://www.mms.gov/
http://www.mms.gov/
http://www.paroscrennc.com/
http://www.ogp.org.uk/
http://www.offshore-technology.gov/
http://www.offshore-technology.gov/
http://www.offshore-technology.gov/
http://www.offshore-technology.gov/


 

x 

Figure 2.4: Wave force on a vertical cylinder ..................................................................  43 

Figure 2.5: A flexible cylinder .........................................................................................  45 

Figure 2.6: Sketch of wave loading on an inclined cylinder ............................................  47 

Figure 3.1: Wind and wave spectra relative to the fixed and TLP structures 

(Kareem, 1987) ..............................................................................................  53 

Figure 3.2: The global and local coordinate system of TLP ............................................  53 

Figure 3.3: The rectangular TLP (plan and elevation) .....................................................  57 

Figure 3.4: The Surge displacement in a rectangular TLP ...............................................  61 

Figure 3.5: The Sway displacement in a rectangular TLP ...............................................  61 

Figure 3.6: The Roll displacement in a rectangular TLP .................................................  64 

Figure 3.7: The Pitch displacement in a rectangular TLP ................................................  66 

Figure 3.8: The Yaw displacement in a rectangular TLP .................................................  69 

Figure 3.9: The triangular TLP (plan and elevation) ........................................................  84 

Figure 3.10: The Surge displacement in a triangular TLP ...............................................  87 

Figure 3.11: The Sway displacement in a triangular TLP ................................................  87 

Figure 3.12: The Roll displacement in a triangular TLP ..................................................  89 

Figure 3.13: The Pitch displacement in a triangular TLP ................................................  94 

Figure 3.14: The Yaw displacement in a triangular TLP .................................................  98 

Figure 4.1: Layout of the studied square TLP ................................................................  115 

Figure 4.2: Layout of the studied Triangular TLP .........................................................  116 

Figure 4.3: Surge response of square TLP for (a) wave period = 8 sec; (b) wave 

period = 10 sec; (c) wave period = 12.5 sec; (d) wave period = 15 sec ......  123 



 

xi 

Figure 4.4: Heave response of square TLP for (a) wave period = 8 sec; (b) wave 

period = 10 sec; (c) wave period = 12.5 sec; (d) wave period = 15 sec ......  124 

Figure 4.5: Pitch response of square TLP for (a) wave period = 8 sec; (b) wave 

period = 10 sec; (c) wave period = 12.5 sec; (d) wave period = 15 sec ......  125 

Figure 4.6: Response Spectrum for pitch motion of square TLP for different wave 

periods (wave height = 8.0m) ......................................................................  126 

Figure 4.7: Tether tension force response of square TLP for (a) wave period = 8 sec; 

(b) wave period = 10 sec; (c) wave period = 12.5 sec; (d) wave period = 

15 sec ...........................................................................................................  127 

Figure 4.8: Phase plane for coupled motion of square TLP (a) Wave period = 10 

sec; (b) Wave period = 15 sec .....................................................................  128 

Figure 4.9: Surge response of triangular TLP for (a) wave period = 8 sec; (b) wave 

period = 10 sec; (c) wave period = 12.5 sec; (d) wave period = 15 sec ......  129 

Figure 4.10: Heave response of triangular TLP for (a) wave period = 8 sec; (b) 

wave period = 10 sec; (c) wave period = 12.5 sec; (d) wave period = 15 

sec ................................................................................................................  130 

Figure 4.11: Pitch response of triangular TLP for (a) wave period = 8 sec; (b) wave 

period = 10 sec; (c) wave period = 12.5 sec; (d) wave period = 15 sec ......  131 

Figure 4.12: Tether tension force response of triangular TLP for (a) wave period = 8 

sec; (b) wave period = 10 sec; (c) wave period = 12.5 sec; (d) wave 

period = 15 sec .............................................................................................  132 

Figure 4.13: Phase plane for coupled motion of triangular TLP (a) Wave period =10 

sec; (b) Wave period = 15 sec .....................................................................  133 



 

xii 

 

LIST OF TABLES 

Page 

Table 1.1: Different types of offshore structures................................................................. 5 

Table 2.1: The linear theory different relationship ............................................................ 38 

Table 2.2: Asymptotic forms of hyperbolic functions....................................................... 34 

Table 4.1: Geometric properties of the square TLP and load data .................................. 113 

Table 4.2: Geometric properties of the triangular TLP and load data ............................. 114 

Table 4.3: Calculated natural structural periods for different analysis cases (in 

seconds) for the four-legged tension leg platforms ...................................... 114 

Table 4.4: Calculated natural structural periods for different analysis cases (in 

seconds) for the three-legged tension leg platforms ..................................... 114 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

xiii 

v

n

F

 

NOMENCLATURE 

 

Ø: Fluid velocity potential 

u: Fluid velocity component in x-direction 

w: Fluid velocity component in z-direction 

η: Distance between MWL and free surface level 

   : Total velocity vector 

     : Fluid gradient function 

   : Unit normal vector associated with gradient function 

Pn :Pressure 

λ: Wave length 

d: Water depth  

k: Wave number 

ω: Wave angular frequency 

c: Wave celerity 

D: Diameter of structure 

As: Cross-sectional area 

g:  Gravity acceleration 

ρ: Water weight density 

Cm: Inertia coefficient  

Cd: Drag coefficient 

Uc: Current velocity  

T: Wave period 



 

xiv 

H: Wave height  

W: Platform weight  

2a: Square platform length 

2b: Square platform width 

Pl:  Triangle platform length  

rx: Platform radius of gyration in x-directions  

ry: Platform radius of gyration in y-directions 

rz: Platform radius of gyration in z-directions  

ir : The location of the mass center with respect to the platform- fixed coordinate system  

iij
:
 Moments of inertia in I- direction                                                                   

ijj :  Products of inertia in I- direction  

[Ma]: Structure added mass matrix 

Dc: Diameter of columns 

HC: Center of gravity above the sea level  

γ: Tether stiffness  

L: Tether length  

DP: Diameter of pontoon 

Dr: Draft distance 

ζ: Damping ratio 

{x}: Structural displacement vector 

{x˙}: Structural velocity vector 

{x¨}: Structural acceleration vector 

[M]: Structure mass matrix 

[C]: Structure damping matrix 



 

xv 

[K]: Structure stiffness matrix 

{Fo (t)}: Hydrodynamic force vector 

M: Mass of the body 

FB: Total buoyancy force 

Tt: Total instantaneous tension in the Tether 

To: Initial pre-tension in the tether 

Sa : Length of the pontoon between the inner edges of the columns in the x- 

direction 

Sb:  Length of the pontoon between the inner edges of the columns in the y- 

direction 

[cs]: Structure damping mass matrix  

[B]: Radiation damping matrix  

[cH] :Hydrodynamic drag damping and is included in the force vector 

[cw]: Aerodynamic damping  

 n : Mode shapes vector
  

n : Structure's natural frequencies 

A: Cross-sectional area of the tether  

E: Young’s Modulus of the tether 

1T : The increase in the initial pre-tension due to the arbitrary displacement given 

in the surge degree of freedom  

2T : The increase in the initial pre-tension due to the arbitrary displacement given 

in the sway degree of freedom 



 

xvi 

 3T : The increase in the initial pre-tension due to the arbitrary displacement given 

in the heave degree of freedom  

4T :  The increase in the initial pre-tension due to the arbitrary displacement given 

in the roll degree of freedom  

5T : The increase in the initial pre-tension due to the arbitrary displacement given 

in the pitch degree of freedom  

6T : The increase in the initial pre-tension due to the arbitrary displacement given 

in the yaw degree of freedom  

x1: Arbitrary displacement in the surge degree of freedom.  

x2: Arbitrary displacement in the sway degree of freedom.  

x3: Arbitrary displacement in the heave degree of freedom.  

x4: Arbitrary displacement in the roll degree of freedom.  

x5: Arbitrary displacement in the pitch degree of freedom.  

x6: Arbitrary displacement in the yaw degree of freedom.  

x   : The angle between the initial and the displaced position of the tether for unit 

displacement given in the surge direction 

y :  The angle between the initial and the displaced position of the tether for unit 

displacement given in the sway direction 

Uv: Body velocity in surge direction 

Ux: Body velocity in heave direction 

F1ic: Inertia surge force on columns 

F1icj: Inertia surge force on column j 



 

xvii 

F1cd: Drag surge force on columns 

F1dcj: Drag surge force on column j 

F1ip: Inertia surge force on pontoons 

F1ipj: Inertia surge force on pontoon j 

F1dp: Drag surge force on pontoons 

F1dpj: Drag surge force on pontoon j 

F11: Total surge force on TLP 

F3c: Heave force on columns 

F3cj: Heave force on column j 

F3ip: Inertia heave force on pontoons 

F3ipj: Inertia heave force on pontoon j 

F3dp: Drag heave force on pontoons 

F3dpj: Drag heave force on pontoon j 

F31: Total heave force on TLP 

MHip: Inertia moment on pontoons due to surge force 

MHipj: Inertia moment on pontoon j due to surge force 

MHdp: Drag moment on pontoons due to surge force 

MHdpj: Drag moment on pontoon j due to surge force 

MHp: Total moment on pontoons due to surge force 

MHic: Inertia moment on columns due to surge force 

MHicj: Inertia moment on column j due to surge force 

MHdc: Drag moment on columns due to surge force 

MHdcj: Drag moment on column j due to surge force 



 

xviii 

MHc: Total moment on columns due to surge force 

MH: Total moment on TLP due to surge force 

MVip: Inertia moment on pontoons due to heave force 

MVipj: Inertia moment on pontoon j due to heave force 

MVdp: Drag moment on pontoons due to heave force 

MVdpj: Drag moment on pontoon j due to heave force 

MVp: Total moment on pontoons due to heave force 

MVc: moment on columns due to heave force 

MVcj:  moment on column j due to heave force 

MVc: Total moment on columns due to heave force 

MV: Total moment on TLP due to heave force 

F51: Total pitch moment on TLP 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

xix 

ABBREVIATION 

 

TLP: Tension Leg Platform 

FPS: Floating Production System 

GPS: Global Position System 

ISSC: International Ship Structure Conference 

PSDF: Power Spectral Density Function  

MWL: Mean Water Level 

SWL: Still Water Level 

MSL: Mean Sea Level 

 



 

xx 

 

 

To the memory of my father, 

           a humble teacher, 

          who had always encouraged me to dream; 

and to my mother, 

            who with constant love and care, 

            taught me how to prservere 

          and turn the dream into a reality. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

1 

 

Chapter 1 

 

INTRODUCTION 
 

1.1 Introduction  

  

A significant part of the world oil and natural gas reserves lies beneath the sea bed. 

The drilling and production operation to exploit this offshore oil and gas supplies is 

generally done from offshore platforms. 

In 1947, the first steel platforms were installed for offshore in the Gulf of Mexico, 

in 20 ft (6 m) of water. The structures were supported by a large number of small piles, 

driven at varying depths and directions. In 1955, a platform was constructed in 

approximately 100 ft (30.5 m) of water. The maximum water depth for offshore 

platforms construction was extended to 225 ft (68.6 m) by 1965 and to 474 ft (144.5 m) 

by 1975. In 1975, the Hondo platform was installed by Exxon in 850 ft (259 m) of water 

in the Santa Barbara channel of California. This was followed in 1978 by Shell's Cognac 

platform in the Mississippi Canyon area in the Gulf of Mexico. Since then several 

offshore platforms were installed in the Gulf of Mexico in water depths greater than 900 

ft (274 m). 

 It is expected that pile-supported platforms will be limited to a maximum water 

depth of 1200-1500 ft (366-457 m), primarily owing to the cost of fabrication and certain 

installation constraints. However, new types of platforms such as guyed towers and 

tension leg platforms, which are designed to move with forces applied by wind, wave 

and current, rather than rigidly resist them, offer promise of extending platform 

capability significantly. 

The first guyed tower, used as a drilling and production platform, Lena, was 

installed by Exxon in 1000 ft (305 m) of water in the Gulf of Mexico in 1983. It is a 

slender, bottom supported tower laterally braced by cable stays. This type of structures is 

cost effective in 2000-2500 ft (609.9-762 m) of water. 

The first tension leg platform used as a drilling and production platform was 

installed by Conoco in 485 ft (147.8 m) of water in the North Sea in 1984. This structure 
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is a floating platform supported by submerged buoyant members and held in place by 

vertical moorings, making the platform less sensitive to water depths. It is believed that 

this type of platform can be cost effective in water depths exceeding 3000 ft (914.4 m). 

Until 1986 over 3500 platform structures were standing in the offshore waters of 

more than 35 countries.   Although, most of these platforms have successfully withstood 

the forces of nature, there have been major damages and some catastrophic failures. Off 

the Louisiana coast alone, in the two-year period between 1957 and 1959, there was an 

estimated damage of about 200 million dollars in Losses of 10 drilling, production and 

pipeline facilities. These resulted from two major hurricanes, the Hilda and Betsy. In 

1980 the Alexander Kielland, a serni- submersible rig, failed and sank in the Norwegian 

sector of North Sea, killing the entire crew of 123 on board. Another accident involving 

the floating platform, Ocean Ranger killed all the crew on board in 1982. These accidents 

reflect inadequacy in the design and analysis or in the operational procedures adopted. 

The rules for the design and analysis have been continually modified to reflect increased 

understanding of the situation. However, there are several areas that still require more 

understanding and need more reliable analytical models. The assessment of 

hydrodynamic loads is one such area. These loads result primarily from the effects of 

water currents and wave actions. The effect of current is relatively easy to assess. 

However, the action of waves is significantly more complex, and difficult to analyze. The 

difficulty lies both in modeling the wave motion itself, and in accounting for the irregular 

nature of the waves in a real ocean. 

 

1.2 Platform Types 

 

Offshore platforms consist broadly of two components: (1) facilities for drilling 

and production operations, often called topsides, and (2) the supporting structure and its 

foundation. The topsides define the function of the platform. Included in the topside plant 

are the drilling rigs and associated equipment, oil and/or gas-processing equipment, 

transportation pumps and/or compressors, utilities and living quarters. Most major 

platforms also have a helideck for helicopters. The second component of an offshore 

platform, and the one that defines its type, is the supporting structure. Such structures 
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must secure the topside facilities against environmental loads, providing safe and 

protected area for equipment and personnel to work. 

The arrangement of structures and imployment of production facilities at a specific 

location are influenced by reservoir capacity, production rate, field size, field shape, 

environmental conditions, and water depth. Other factors affecting the selection of an 

offshore platform are availability of construction materials, proximity and capability of 

fabrication facilities, availability of installation equipment, and equipment considerations 

such as capital cost, time to start up, and operating and maintenance costs. 

Platform types are classified in two groups according to their function and 

structural supports as: 

 

1.2.1 Platform Function 

Because the platform supports the operating function for which it is required, the 

function dictates the basic configuration of a platform. 

 

1.2.1.1 Drilling Platforms 

Structures that provide lateral support to one or more wells drilled with a mobile 

drilling rig are normally referred to as well protector platforms. These are undoubtedly 

the most common platforms in service today. Generally found in water depths less than 

150 ft (45.7 m), these structures are small, often straight-sided, and normally sized to fit 

within the drilling slot of a submersible or jack-up drilling rig.  

There are usually three or four pile structures with minimum size decks, they 

provide only minimum production facilities, if any, and their wells are most frequently 

connected by pipe lines to nearby production facilities. 

 

1.2.1.2 Production Platforms 

Some owners prefer to separate drilling operations from production operations 

because of safety considerations. The production platform is connected by bridge or 

pipeline to the drilling platform. 
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1.2.1.3 Self-Contained Drilling and Production Platforms 

Many structures are designed to serve the combined functions of drilling platforms 

and production platforms, these structures contain the wells and all the required drilling 

equipment and supplies, and provide the required space for production facilities. The 

standard self-contained platform is typically a two-deck, eight-pile, and template-type 

structure with provisions for 12-24 wells. The drilling rig is generally installed on the 

upper deck, and the basic production facilities are placed on the lower deck, separated 

from the wellhead area by a firewall. 

 

1.3 Platform Structural Types 

Offshore platforms are usually divided into two general categories (Table 1.1), 

(Figure 1.1), fixed and compliant platforms. Fixed types are traditional structures, extend 

to the seabed and remain in place by their weight or by piles driven into the soil, in the 

sense that its deformation under lateral loads is small, but it is located into the sea water.  

Unlike fixed, compliant platforms are more responsive to external effects and their 

movements are controlled by mooring systems. They are designed to move under lateral 

forces, so that the effects of these forces are mitigated. Compliant platforms are used in 

deep water, where the stiffness of a fixed platform decreases while its cost increases, and 

they are the only technical solution in very deep water (>500 m). 

The increase in cost of fixed offshore structures with depth of water encouraged the 

development of compliant- type structures. The key idea behind their installation is the 

minimization of the resistance of the structure to environmental loads by making the 

structure flexible. 
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Figure 1.1:  1,2) Conventional fixed platforms; 3) compliant tower; 4,5) Vertically             

moored tension leg and mini-tension leg platform; 6) Spar; 7,8) Semi-submersibles; 9) 

Floating production, storage, and offloading facility; 10) Sub-sea completion and tie-

back to host facility.(www.mms.gov) 

 

Table 1.1: Different types of offshore structures. 

Classification Type Function Control mooring 

Fixed offshore platform 
Steel jacket -Steel tower 

-Steel gravity -  Concrete gravity 
production - 

Compliant offshore platform 

Free standing tower 

-Guyed tower   -    Spar tower 

-Tension leg platform(TLP) 

production 
Anchor wire pipe 

tethers 

Mobile offshore platform 
Drilling ship    -    Jack up 

-Semi submersible 

Exploration and 

drilling 
Wire DP-legs 

 

 

 

 

 

(10) (9) (8) (7) (6) (5) (3) (4) (2) (1) 

http://www.mms.gov/
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1.3.1 Fixed Offshore Platforms 

1.3.1.1 Steel Jacket  

This is a space frame that extends from the sea bottom to above the water surface. 

Piles are driven through the legs of the jacket into the sea floor (Figure1.2). These 

transfer vertical loads to the soil and fix the structure in place against lateral loads from 

wind, Waves, currents and collisions with ships or ice bergs. The bending stiffness of the 

piles contributes to the lateral stiffness of the structure and thus they are rigidly 

connected to the structure and are placed as far away from each other as possible. Steel 

jackets are normally used in shallow to moderate deep waters (from 20 to 100 m), but 

they have been used up to 500 m of water.  Their natural period ranges from 1 to 5 

seconds. The natural period of the jacket type structure increases with the increase in 

water depth until it becomes close to the period of the peak wave energy which leads to a 

large dynamic magnification. 

 

1.3.1.2 Steel Tower 

It is a large jacket where the piles cannot be inserted in the legs mainly for 

economical reasons (Figure1.3).  In fact, too long piles are too expensive. So, when the 

platform is located in deep waters, the jacket becomes very heavy and the piles cannot be 

as long as the legs.  They become skirt piles inserted in sleeves around the outside of the 

legs.  In this way, the legs are plugged and normally sufficient to ensure resistance of the 

buoyancy. This is very convenient from both economical and construction aspects.   

 

1.3.1.3 Steel gravity platforms 

This type of structure is rarely used. It uses its own weight to counter the lateral 

actions due to wind and waves that tend to overturn the platform, the weight is used as a 

stabilizing force (Figure1.4).  The real reason for using gravity platforms is the nature of 

the soil, when it is of solid rock, it is impossible to drive piles into it, so the gravity 

solution is the only possible one.  Normally, gravity platforms are concrete platforms, but 

in some cases a steel solution can be adopted, in relation with several factors, mainly 

economic considerations.  Normally, the structure has a certain number of large tanks, 

flooded by water or by crude oil, to ballast the platform and provide the necessary weight 
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to counter overturning lateral forces.   An important feature of all the gravity platforms is 

that they can be removed for demobilization or re-use. 

 

1.3.1.4 Concrete Gravity Platforms 

They are the hugest and most impressive structures ever built. In this platform, the 

steel structure supporting the deck is totally or partially replaced by a concrete structure 

of large dimensions (Figure1.5).  It consists of cluster of oil storage tanks surrounding 

hollow, tapered concrete legs that extend above the water line to support a steel deck.  

Concrete gravity platforms are used when some particular circumstances are present: 

a.  Economical factors: in some cases, the construction of a very large 

concrete structure can be cheaper than the construction of a steel structure;  

b. Ecological factors: a concrete platform can be very huge, so as to 

concentrate onboard some industrial treatments of the crude and to allow a 

great stocking capacity in the ballast cells; 

c. Construction conditions: the pile driving operation for a steel jacket needs 

usually 5 to 10 days; in the North Sea it is rare to have such a period of 

fine weather; the installation in the oil field of a concrete gravity platform, 

complete with its deck, requires a shorter period (1 to 2 days); 

d. Decommissioning aspects: concrete gravity platforms can be 

decommissioned and eventually re-used; 

e. Soil conditions: when the soil is made of rock it is impossible to drive 

piles into it: the gravity solution is then the only one possible; 

f. Geographical conditions: the presence of calm and deep waters not far 

from the oil field is an important factor for the construction phases. 

These structures can reach a height of 400 m and weigh more than 800000 ton. 
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1.3.2 Compliant Offshore Platforms 

1.3.2.1 Free Standing Towers  

They are classical towers but so slender that their structural behavior is similar to 

that of a compliant structure with large sway displacements and high oscillating period 

(Figure1.6). 

 

1.3.2.2 Guyed Towers  

It consists of a uniform cross section held by several guy lines (anchor cables) 

supported by clump weights resting on the sea floor (Figure1.7). Under normal operating 

loads, the clump weights remain on the sea floor forming a mooring system. Under sever 

environmental loads, the clump weights are lifted off the sea floor. Therefore, the tower 

acts as pinned tower at its base and absorbs the loads by swaying back and forth without 

overloading the guy lines. Guyed tower platforms are used for water depth of about 660 

m.  

 

1.3.2.3 Spar Towers 

These platforms are composed of a large steel tube as substructure directly 

supporting the deck and topsides.  The tube is ballasted so as its floating stable 

equilibrium position is vertical (including topsides), and moored by tensioned risers and 

by mooring lines (catenaries).  On the lateral surface of the large vertical cylinder there 

are helicoids, installed to counter vortex-shedding. 

 

1.3.2.4 Tension Leg Platforms (TLP) 

The TLP is basically a floating structure moored by vertical tubular member, or 

"tethers". These tethers are pretensioned due to the excess buoyancy of the platform. As, 

the platform translates horizontally, the horizontal component of the pretension in the 

tethers tends to force the platform back to its original position (Figure1.8). The TLP is 

compliant in horizontal plane, but quite rigid in the vertical direction. The TLP has a six 

degree of freedom, shown in Figure 1.11. The concept of TLP has been in existence since 

the early 1970's. 



 

9 

 

 A TLP is composed of 4 principal parts: the foundation template, the tethers, the 

hull and the deck.  Some TLPs (e. g. Heidrun) have a concrete hull.  TLPs are very large 

structures, able to host great payloads. So, they are used for great fields and can host 

some refining processes and have a good storage capacity TLP can be used from 150 m 

of water depth on, and theoretically there is no limit of water depth for their use. The 

restoring force is given by extra buoyancy; this is obtained deballasting the TLP hull 

once the tethers installed. TLPs can be reused. 

The long periods of vibration associated with the compliant structures prevents 

dynamic amplification of the response due to first order waves, since there is little or no 

energy associated with the wave forces for long periods. While these long periods of 

vibration remove any concern associated with dynamic amplification of first order wave 

loads, wind loads and second order non-linear wave loads can be of importance.   

Most of the energy associated with wind loading occurs at periods of about 40 

seconds and longer, and as a result, dynamic amplification of the response due to wind 

loads may be of prime importance in estimating the response of compliant structure to 

environmental loads. The cost for other offshore structures will rise more rapidly than 

that of TLP in deep-water reservoirs.  The TLP is essentially advantageous for the 

following reasons: 

1. It attracts a lesser impact of the wave loading due to its compliant nature 

and hence can operate even in rough sea. 

2. The natural frequencies in the main or soft degrees of freedom (surge, 

sway and yaw) are well below the wave frequencies, thus avoiding the 

occurrence of resonance and reducing the horizontal motion and hence 

loading on the tether platform system. 

3. It is less expensive than the bottom-supported structures, especially in 

deep seas. 

4. It can be easily dismantled, installed and transported according to site 

requirements. Where, the change in the water depth essentially requires a 

change in the tether length. 

5. It is much safer in a seismically active zone compared with any other 

fixed platform.  
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6. Because of the restrained vertical motion of the TLP, it is quite convenient 

to monitor and maintain the risers, oil wells and tethers. 

7. A particularly attractive feature of the TLP is the ability to shift any 

resonance outside the frequency region of the active wave energy. 

 

1.3.3 Mobile Offshore Platforms 

1.3.3.1 Drilling Ships 

Like all the mobile systems, drilling ships are used mostly for the drilling phase, 

but they can be used, at least temporarily, also as Floating Production System (FPS).  A 

drilling ship is, as its name indicates, a common ship equipped with a drilling system (a 

derrick tower) (Figure1.9).  It is maintained in its position by a system of mooring 

catenaries, eventually assisted by servo-motors and GPS positioning. 

 

1.3.3.2 Semi-Submersibles  

As their name indicates, these are special ships, normally composed of two 

pontoons, some columns and a deck. The deck is equipped for all the drilling operations.  

A semi-submersible is a complete platform that can navigate as it is furnished of motors. 

Once in place, its positioning is provided by a system of catenaries normally controlled 

by a GPS system.   Recently a concrete semi-submersible has been constructed. 

 

1.3.3.4 Jack-Ups 

These are special mobile platforms, normally used for the drilling operations 

(Figure1.10).  They are triangular barges, completely equipped for the drilling operations 

and disposing of three or four truss legs.  These legs can be lifted or lowered by motors. 

When the legs are lifted, the jack-up can navigate just as a common ship. Once arrived on 

the field, the jack-up lowers the legs so as to be fixed in the drilling place and it lifts 

itself at the right height above the sea level. 
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Figure 1.2: The scheme of steel jacket platform (www.mms.gov) 

 

http://www.mms.gov/
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Figure 1.3: The scheme of steel tower platform (www.mms.gov) 

 

 

http://www.mms.gov/
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Figure 1.4: The scheme of steel gravity platform (www.paroscrennc.com) 

 

Figure 1.5: The scheme of concrete gravity platform (www.ogp.org.uk) 

http://www.paroscrennc.com/
http://www.ogp.org.uk/
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Figure 1.6: The scheme of free standing tower (www.offshore-technology.gov) 

 

Figure 1.7: The scheme of guyed tower (www.offshore-technology.gov) 

 

http://www.offshore-technology.gov/
http://www.offshore-technology.gov/


 

15 

 

 

Figure 1.8: The scheme of tension leg platform 

e 
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Figure 1.9: The scheme of drilling ships (www.offshore-technology.gov) 

 

 

Figure 1.10: The scheme of jack-ups 

(http//community.webshots.com/album/126570186zwqfus) 

http://www.offshore-technology.gov/
http://www.offshore-technology.gov/
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Figure 1.11: Six degree of freedom of offshore structure. 

 

 

1.4 Literature Review 

 

Since the original concept of the TLP put forward.  Most of the literature available 

is on conventional square (four-legged) TLPs.  Paulling and Horton, 1970, reported a 

method of predicting the platform motions and tether forces due to regular waves using a 

linearized hydrodynamic synthesis technique. Each member was assumed to be 

cylindrical in shape with cross-sectional dimensions small in comparison to both the 

length of the cylinder and the wave length. 

Also, a number of studies has been made on the dynamic behavior of TLP 

platforms under both regular and random waves (Taudin, 1978; Denis and Heaf, 1979; 

Tan and De Boom, 1983). The majority of these studies deal with the two dimensional 

behavior of the platform. The hydrodynamic interactions between adjacent or 

intersecting members were neglected. The drag term was linearized and the free-surface 

effect was neglected.  The results agreed well with experimental model results. The 

motions and tensions due to regular waves were shown to vary in a linear fashion with 

wave amplitude. 

Angelides et al., 1982, considered the influence of hull geometry, force 

coefficients, water depth, pre-tension and tether stiffness on the dynamic responses of the 
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TLP. The floating part of the TLP was modeled as a rigid body with six degrees of 

freedom. The tethers were represented by linear axial springs. Wave forces were 

evaluated using a modified Morison equation on the displaced position of the structure 

considering the effect of the free sea surface variation.  

Faltinsen et al., 1982, developed a comprehensive theoretical model for the 

behavior of a TLP and verified such model using test program.  The basic outline of the 

model included: 

(i) The velocity potential solution for first- and second-order hydrodynamics, 

except for the slender members which were modeled with Morison’s 

equation, 

(ii) Morison’s theory and Newman’s approximation to calculate drift forces, 

(iii)The large deflection three-dimensional finite element theory with forces from 

Morison’s equation which was used for the tethers, 

(iv) The short-crestedness of waves, and  

(v) The wind and current. The origin for the Mathieu-type instabilities was the 

presence of a constant plus a time-dependent restoring force for surge, sway 

and yaw. The amplitudes of oscillations due to the Mathieu-type instabilities 

depended on the damping in the system and the relative importance of the 

time-dependent restoring term compared to the constant restoring term.  

Lyons et al., 1983, presented comparisons between the results of hydrodynamic 

analyses and two sets of large-scale model test results for the wave-induced motion 

responses of TLPs. The results of analyses and tests showed good agreement for surge 

motions although discrepancies were observed for the tether tension responses at certain 

wave frequencies. Linear wave theory was used and hydrodynamic interference between 

members was neglected. The nonlinear damping was linearized by assuming an effective 

linear damping, which would dissipate the same amount of energy at resonance as the 

nonlinear damping. 

Teigen and Navig, 1983, presented the response of a TLP in both long-crested and 

short-crested waves through model tests. It was concluded that the low-frequency part of 

the horizontal response looked enlarged in tests carried out in long-crested seas, 
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compared to tests carried out in short-crested seas, irrespective of the actual shape of the 

directional distribution.  

Few investigations, however considered all the six degrees of freedom of the 

platform in describing its dynamic behavior (Morgan and Malaeb 1983; Chandrasekaran 

and Roy 2005). They presented phase space studies of offshore structures subjected to 

nonlinear dynamic loading through Poincare maps for certain hydrodynamic parameters. 

Morgan and Malaeb, 1983, investigated the dynamic response of TLPs using a 

deterministic analysis. The analysis was based on coupled nonlinear stiffness coefficients 

and closed-form inertia and drag-forcing functions using the Morison equation. The time 

histories of motions were presented for regular wave excitations. The nonlinear effects 

considered in the analysis were stiffness nonlinearity arising from coupling of various 

degrees of freedom, large structural displacements and hydrodynamic drag force 

nonlinearity arising from the square of the velocity terms. It was reported that stiffness 

coupling could significantly affect the behavior of the structure and the strongest 

coupling found to exist between heave and surge or sway.  

Spanos and Agarwal, 1984, used a single degree-of-freedom model of a TLP and 

calculated wave forces at the structure’s displaced position using the Morison equation. It 

was shown that by numerically integrating the equation of motion, the calculation of 

wave forces, on the displaced position of the structure, introduces a steady offset 

component in the structural response for either deterministically or stochastically 

described wave fields. The formulation did not involve any velocity-squared type of 

terms, and yet an offset component was found to be present.  

Vickery, 1988, studied the importance of wind load on TLP through using different 

two numerical models and through an experimental scale model study carried out in a 

wind – wave flume. The numerical models included a full diffraction analysis and effect 

of the second – order, non-linear wave drift force. 

Bhattacharjee, 1990, studied the applicability of the state space method for 

modeling idealized three degree of freedom of TLP.  Jain, 1990, investigated the relative 

importance of different types of nonlinearities on the dynamic response of TLP and 

focused on the nonlinear effect of evaluating the wave forces up to the free surface using 

different approximation method, and TLP hull model with time varying tendon forces is 
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subjected to regular wave with and without current, the effect on calculating the wave 

kinematics up to mean sea level or up to the actual free surface making use of various 

extrapolation or stretching techniques are discussed. 

Ahmad et. al, 1990, studied the effect of the variable submergence on the 

maximum tether tension force on TLP with change in wave incidence angle.  The study 

was carried out on coupled and uncoupled model.   Jain et.al, 1990, studied the effect of 

wind load on the dynamic response on TLP where the sea state was characterized by 

Pierson-Moskowitz spectrum.  

Kareem and Li, 1992, presented the response of a TLP to wave drift forces. The 

wave drift forces on TLP are contributed to second- order potential and viscous wave 

loading effect, the fluctuations in wave surface elevation, and the influence of platform's 

displaced position on the wave excitation.  

Li et al., 1993, presented the second – order double- frequency wave loads on ISSC 

TLP in regular waves.  Huse and Utnes, 1994, presented an experimental investigation 

on hydrodynamic spring damping of TLP columns as influenced by the presence of 

current and waves, and by the variation of radius of curvature at the lower edge of the 

columns. They also compared the numerical calculations of the damping in calm water 

with the experiment. 

Mekha et. al, 1994, studied the nonlinear effect of evaluating the wave forces on a 

TLP up to the wave-free surface. Several approximate methods were evaluated for 

regular and irregular wave forces, with and without current, and compared to Stoke's 

second-order wave theory. The tethers were treated as massless springs providing axial 

and lateral stiffness at their connection with the hull. 

Lee, 1994, presented the analytical solution of the coupling problem of a 2D tension 

leg structure interacting with a monochromatic linear wave train. Fluid-induced drags, 

including form drag and inertia drag, on linearly elastic tension legs had been considered 

in the study. The nonlinear form drag was then replaced by a linear drag according to 

Lorentz’s hypothesis of equivalent work. Analytical solutions showed that the inertia 

drag on tension legs was negligible compared to that due to the evanescent waves caused 

by the wave–structure interaction. However, the form drag on the legs altered the 
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structural motion and, consequently, the wave field, especially when wave periods were 

close to the structure’s resonant frequency.  

Hahn, 1994, reported the effects of wave stretching on realistic representations of 

the wave forces that act on offshore structures. The structures considered were modeled 

as linear, cantilever, stick-like systems. The lateral responses of such systems to wave 

forces, computed from water particle kinematics calculated by using the standard and 

stretching approaches, were examined. The results showed that the effects of stretching 

on the governing wave forces and the resulting structural responses were small, 

indicating that they could be ignored in design practice. It was also shown that the action 

of stretching could not materially influence the governing excitation and the 

corresponding structural response. 

Duggal and Niedzwecki, 1995, presented results from a large-scale experimental 

study of the interaction of regular and random waves with a long, flexible cylinder, 

exhibiting the dynamic characteristics of a TLP riser or tether in approximately 1000 m 

of water depth. Regular wave conditions were chosen to provide a large range of 

Keulegan–Carpenter numbers. Classification of the transverse response in regular waves 

showed similarities with results obtained by previous investigators with oscillating flow 

on rigid cylinders. For high Keulegan–Carpenter numbers, the response became more 

irregular, with response at harmonics of the incident wave frequency and at several 

natural frequencies of the cylinder.  

Natvig and Vogel, 1995, focused on design of future TLPs should be on the aspects 

of the platform geometry that affects tether loading and on the tether system itself. Their 

experience with a four-legged TLP has shown that the indeterminate tether system 

implies some very heavy cost items. The new concept of a three-legged TLP, which is 

statically determinate, will not require complicated devices and the foundations can be 

placed with larger tolerances without affecting tether behavior. The main aspect of three-

legged TLP is that all tethers share approximately the same loads despite weather 

directions. With the near-equal load sharing of the three-legged TLP, the maximum load 

level in one group is less, thus requiring less tether cross section material than that of a 

four-legged TLP. Studies indicate that 12 tethers are feasible for a three-legged TLP 
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whilst 16 would be required for a four-legged equivalent TLP. This is thus an important 

area for savings since tethers are important cost items. 

Munkejord, 1996, presented a conceptual analysis of the triangular TLP behavior 

and then compared the results with data from model tests. The objective was to verify 

maximum tether tension, maximum platform offset, and minimum air gap and tether 

fatigue. Aker and Saga Petroleum developed the concept of a triangular TLP, which has 

enabled significant savings in main steel for both hull and deck due to fewer main 

element intersections and effective force distributions. Munkejord, 1996, summarized the 

design features for the triangular TLP of Aker as a statically determinate system with 

effective distribution of dynamic loads and fixed-length tethers. They stated that no 

design cases where TLP sustained a maximum storm with one tether missing were 

reported. No tether tension measurements required day-to-day operation and increased 

tolerances for the position of the foundation and increased draught and heel tolerances.  

Ahmad, 1996, investigated the coupled response of a TLP to random waves 

characterized by a long-crested sea surface spectrum. The response analysis was based 

on a simulation, which duly considered various nonlinear effects, such as relative 

velocity squared drag force, variable added mass due to variable submergence with the 

passage of waves and nonlinearity due to large excursion. It also accounted for variable 

tension in tethers due to variable submergence, variable buoyancy and vertical wave 

forces. The power spectral density function (PSDF) of the coupled heave and tether 

tension showed the energy distribution with respect to frequencies and proved to be an 

important informative tool for the preliminary design under the long-crested sea state. 

Variable submergence was found to be a major source of nonlinearity enhancing the 

surge and heave responses, which in turn introduced tether tension fluctuations.  

Ahmad et.al, 1997, dynamic response studies of a tension leg platform (TLP) are 

carried out in time domain to investigate the influence of non-linearities due to the 

hydrodynamic drag force, variable cable tension, variable submergence, long excursions 

and fluctuating wind together with the effect of coupling. The sea state is characterized 

by Pierson Moskovitz spectrum while the fluctuating wind has been estimated using 

Emil Simiu's wind spectrum which is meant for the compliant offshore structures. 

Random wind and waves are modeled by Monte-Carlo simulation. Power spectral 



 

23 

 

density functions (PSDF) are plotted to highlight the wind-induced dynamic responses of 

the structure. 

Jain, 1997, Dynamic response analysis of a TLP to deterministic first order wave 

forces is presented, considering coupling between the degrees-of-freedom surge, sway, 

heave, roll, pitch and yaw. The analysis considers nonlinearities produced due to changes 

in cable tension and due to nonlinear hydrodynamic drag forces. The wave forces on the 

elements of the pontoon structure are calculated using Airy's wave theory and Morison's 

equation ignoring diffraction effects. The nonlinear equation of motion is solved in the 

time domain by Newmark's beta integration scheme. The effects of different parameters 

that influence the response of the TLP are then investigated. Like change in tether 

tension force and damping ratio. 

Lee and Wang, 2000, investigated the dynamic behavior of a TLP with a net-cage 

system with a simplified two-dimensional modeling. They found that there is a close 

relationship between the dynamic behavior of the platform and the net-cage features. 

Chandrasekaran and Jain, 2002a; 2002b, investigated the structural response 

behavior of the triangular TLP under several random sea wave loads and current loads in 

both time and frequency domains. They studied the effect of coupling of stiffness 

coefficients in the stiffness matrix and the effect of variable submergence of the 

structure, due to varying water surface, on the structural response of the triangular TLP.  

Tabeshpour et. al, 2004, studied the effect of added mass fluctuation on the heave 

response of the TLP by using perturbation method both for discrete and continuous 

models.  Bhattachatya et. al, 2004, investigated coupled dynamic behavior of a mini TLP 

giving special attention to hull-tether coupling.  

Tabeshpour et. al, 2005, studied an analytical heave vibration of TLP with radiation 

and scattering effects for undamped systems where the effect of structural and radiation 

damping on the response of the structure was not considered so that the amplitude of the 

heave motion was over estimated. 

Ketabdari and Ardakani, 2005, developed a computer program to evaluate the 

dynamic response of sea-star TLP to regular wave forces considering coupling between 

different degrees of freedom. 
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Tabeshpour et.al, 2006, nonlinear dynamic analysis of TLP is carried out in both 

time and frequency domains. The time history of random wave is generated based on 

Pierson-Moskowitz spectrum and acts on the structure in arbitrary direction. The 

hydrodynamic forces are calculated using the modified Morison equation according to 

Airy’s linear wave theory. The power spectral densities (PSDs) of displacements, 

velocities and accelerations are calculated from nonlinear responses. The focus of the 

paper is on the comprehensive interpretation of the responses of the structure related to 

wave excitation and structural characteristics. As an example a case study is investigated 

and numerical results are discussed. 

Chandrasekaran et.al, 2007, focuses on the response analysis of triangular tension 

leg platform (TLP) for different wave approach angles varying from 0 through 90 and its 

influence on the coupled dynamic response of triangular TLPs.  Chandrasekaran et.al, 

2007b, Dynamic analysis of two triangular TLP models at water depths 1200 and 527.8m 

is performed under regular waves along with impulse load acting at an angle of 45 

degrees at the TLP column.  

Kurian et. al, 2008a, developed a numerical study of the effect for determining the 

dynamic responses of square TLPs subjected to regular and random wave, with available 

theoretical and experimental results. Also, parametric studies have been made varying 

parameters such as water depth, pretension, wave angle and position of center of gravity.  

Kurian et. al, 2008b, developed a numerical study of the effect for determining the 

dynamic responses of square and triangular TLPs subjected to random wave, with 

available theoretical.  They found that the responses of triangular TLP are much higher 

than that of square TLP.  

Joseph et.al, 2009, presents a new geometric configuration which could be a better 

alternative to an existing configuration. A 3-column mini TLP is designed and its 

platform-mooring coupled dynamic behavior is investigated and compared with an 

existing 4-column mini TLP.  

Y. M. Low, 2009, presents the formulation for the linearization in all six degrees-

of-freedom.  Y. M. Low, 2010, developed a simple method for incorporating setdown in 

the extreme response prediction of the airgap. 



 

25 

 

Chan K. Yang, M. H. Kim, 2010, developed a numerical study of the transient 

effect of tendon disconnection on global performance of an extended tension leg platform 

(ETLP) during harsh environmental conditions of Gulf Of Mexico (GOM).  

 

1.5 Aim of The study 

 

In this study, dynamic analysis of squared and triangular model TLP to regular 

waves is presented, considering the coupling between surge, sway, heave, roll, pitch and 

yaw degrees of freedom. The analysis considers various nonlinearities produced due to 

change in the tether tension and nonlinear hydrodynamic drag force. The wave forces on 

the elements of the structure are calculated using Airy’s wave theory with Chakrabarti 

(1971), approaches and Morison’s equation, ignoring the diffraction effects. The 

nonlinear equation of motion is solved in the time domain using Newmark’s beta 

integration scheme.  

Numerical studies are carried out in the time domain to examine the effect of 

change of wave parameters (wave height and wave period) and coupling effect on 

dynamic response of a square and a triangular TLP under a unidirectional surge wave 

force.  Also, Numerical studies are conducted to compare the coupled response of a 

triangular TLP with that of a squared TLP and the effects of different parameters that 

influence these responses are then investigated. Computer MATLAB program is 

developed in this work for nonlinear dynamic analysis for both triangle and squared TLP 

which is capable of solving large displacement problem dynamically in the time domain. 

 

1.6 Organization of the Present Study 

 

This thesis consists of five chapters, after this introductory chapter, Chapter 2 

presents a review of the basic equations of ocean wave propagation using linearized 

gravity waves theory. It also includes a short review of the wave force representation 

using Morison equation. 

Chapter 3 describes the equations of motion being utilized in modeling tension leg 

platform. Detailed drevision of the equations of squared and triangular tension leg 
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platform are presented.  The time integration scheme and the iterative solver of a system 

of nonlinear equations using Newmark beta method are also provided. 

Chapter 4 presents the studied model for both squared and triangular TLP. The 

chapter also presents the obtained results for both of square and triangular TLPs. A 

general view on all discussions and comments on the results are also presented in this 

chapter. 

Chapter 5 presents the conclusions of this thesis along with recommended future 

work that may improve the applicability of the proposed method.  
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Chapter 2 

 

HYDRODYNAMIC LOADS 
 

2.1 Introduction 

 

The oceans have been an important part of our life for centuries, providing various 

natural sources. They have also provided a continuous challenge to human by the 

enormous forces contained in the waves.  The waves in a severe storm may devastate 

coastal villages and wreck ships, harbors, lighthouses and other important structures, 

causing great damages. However, the same waves if harnessed properly can be 

everlasting sources of energy.  Attempts to fully understand the complex phenomena of 

wave dynamics have been only partially successful.  An accurate and improved analysis 

of the highly irregular wave dynamics has become even more important with the 

increased interest in natural offshore resources.  

Ocean waves are the result of energy input into the ocean through natural 

phenomena; primarily wind, through a complicated process in which the momentum of 

the wind passing over the sea surface is transferred into wind waves, which develop with 

time and space.  This type of ocean wave is random in nature, and typically has period in 

the range of 1 to 20 seconds.  Large storm waves lengths around 600 meters.  It is these 

wind-generated waves which are of the most importance in the evaluation of the wave 

loads on offshore structures. Although wind-generated waves are extremely certain, 

simplification can be made so that the waves may be adequately described using 

mathematical models. Also tidal forces and occasionally earthquakes, are free surface 

phenomena, with a continual exchange of kinetic and potential energy as the fluid 

particles oscillates about the mean level of fluid surface.  The longest period waves are 

those associated with tides, which are caused by the gravitational pull of the sun and the 

moon.  Tides have periods in the range of 12 to 24 hours, and height of the order of 10 

meters. 
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2.2 Theory of Linearized Gravity Waves  

 

The motion of water waves is a complex phenomenon. Even in its most simple 

form, after numerous simplifying assumptions, only an approximate solution can be 

obtained (Airy, 1845, Dean and Dalrymple, 1984, Chakrabarti, 1987). In a strict sense, 

water waves propagate in a viscous fluid medium, over an irregular bottom of varying 

permeability. Fortunately, the main body of the fluid motion is nearly irrotationally, 

except for a "thin boundary layer" near the bottom and the surface. Also, the water can be 

considered incompressible for all practical purposes. These conditions imply that a 

velocity potential exists for the main body of the fluid, and the objective of any wave 

theory is to solve for this potential function. 

The linear wave theory has been developed for long-crested waves. These are 

deterministic waves that are propagating in one direction. And the wave crests are "long 

enough" so that the fluid has no motion in the direction of the wave crest. Thus the flow 

can be considered essentially two-dimensional, and restricted to the x-z plane of 

propagation.  

Since the flow is irrotational, a velocity potential Ø, can be defined and the velocity 

component in the x and z directions are given as 

                                                                                                                                       (2.1) 

 

The introduction of Ø into the continuity equation for two-dimensional 

incompressible flow is defined as 

(2.2) 

Or, 

                                                                                                                (2.3) 

Or, 

                                                         (2.4) 

 

The velocity potential Ø pertaining to fluid region can be determined through 2-D 

Laplace equation 
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 (2.5) 

The governing equation for the gravity wave is obtained as a solution for Ø in Eqn. 

(2.5), subject to the appropriate boundary conditions. In the above, x denotes the positive 

direction of wave propagation, z is positive upward, and the origin is fixed at the still 

water level (SWL). 

The sea bottom is assumed to be a rigid, impenetrable, horizontal boundary for the 

mathematical derivation. This results in the condition of "no flow across the rigid 

boundary". 

  

    (2.6) 

  where, d is the local water depth.  

The boundary condition at the sea surface is more complex in nature, and most text   

present only the final equation, without explaining how it was arrived. The kinematic 

free surface boundary condition states that a particle lying on the free surface at one 

instant of time would continue to remain on the free surface. Mathematically it implies 

that if the free surface of a wave is described by F(x,z,t) = z - η (x, t) = 0, where η (x, t) is 

the displacement of the free surface about the SWL ( z = 0). Then,  

 

(2.7) 

 

Or, 

(2.8) 

 

Thus, 

(2.9) 

 

 

Where, 

 

                                                                                        (2.10) 
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nWhere,     is the unit normal vector associated with the gradient function         as 

  

                                                                                                             (2.11) 

on substituting   F(x,z,t) = z - η (x, t) = 0, on Eqn.(2.9) the kinematic boundary condition 

at the free surface is  

 

    (2.12) 

                                   

Where, the unit normal to the surface F(x, z) is given by 

 

(2.13) 

 

Thus, 

 

(2.14) 

  

Carrying out the dot product this leads to 

 

(2.15) 

 

Substituting                in the above, the kinematic free surface boundary condition can  

 

be represented as  

 

(2.16) 

 

Which means that the velocity of the free surface equal to the particle velocity normal to 

the free surface (kinematic condition).   

The free surface, such as the water-air interface cannot support pressure variations, 

neglecting surface tension effects. Across the interface thus, the free surface responds in 
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order to maintain the uniformity in pressure. A complicating factor in the wave equation 

is that the upper boundary is not known apriori, applying the Bernoulli equation with 

 Pn= constant is applied, on the free surface  

 

(2.17) 

 

Usually, the Pn /ρ term is absorbed in the constant C( t ), replacing the latter by a 

new constant C1( t ),Thus, the problem is to find a solution to Ø (x,z,t) which satisfies the 

boundary condition specified by Eqns.(2.16) and Eqns.(2.17)   at z= η 

 

(2.18) 

Which means that the pressure at the free surface is constant and equal to zero (i.e, 

atmospheric pressure) (dynamic condition). 

The difficulties associated with the free surface boundary conditions are that they 

are non linear and are valid only at z=η, which is unknown. To linearize the boundary 

conditions, it is assumed that the wave height is very small relative to wave length 

(H<<<λ) neglecting the nonlinear terms in Eqn. (2.16) lead to, 

 

(2.19) 

And in Eqn. (2.17, 2.18) lead to, 

 

(2.20) 

 

Next, the boundary conditions are applied at z = 0 instead of z= η. Simplifying the 

boundary conditions to 

From Eqn. (2.16)  

 

        (2.21) 

and from Eqn. (2.18) 

 

  

(2.22) 
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(2.23) 

    The solution to this simplified boundary value problem is (Dean and Dalrymple, 1984) 

(2.24) 

 

So from Eqn. (2.23) and Eqn. (2.24) lead to 

                                                                                                  (2.25) 

 

Where, H is the wave height, T is the wave period, k=2π/ λ is the wave number, λ is the  

Wave length, (ω) = 2π/T is the wave angular frequency, c = ω/k is the wave celerity. The 

frequency and wave number are related for linear waves by the dispersion equation  

(2.26) 

Or, 

(2.27) 

 Where, g is the gravity acceleration. 

The independent wave parameters are the local water depth, d, wave height, H, and 

anyone of the following four parameters: ω,k,λ or T. Furthermore, waves become 

unstable and break (Stokes, 1847) when either the crest angle exceeds 120 degrees or the 

following ratio of wave height to length is exceeded:  

(2.28) 

 

Once the velocity potential Ø is obtained the three fundamental unknowns of the 

flow field, namely velocity, pressure and acceleration along with other parameters of 

interest, may be evaluated as listed in Table (2.1).  

 Further, the dynamic pressure under a surface wave at a depth z below the SWL is 

in table where the first term on the right hand side denotes the hydrostatic pressure due to 

the water head up to the still water, and the second term represents the dynamic pressure 

due to wave motion. The dynamic pressure term has the same sign as the hydrostatic 

pressure under a trough and the opposite one under a crest it is interesting to note the 

action of surface waves on a fully submerged. Neutrally buoyant body due to this 

dynamic pressure effect it would experience a net downward force under a wave crest 

and an upward force under the trough. This fact is used to advantage in the design of 
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semisubmersibles. Where, the change in the vertical forces on the columns due to 

variable submergence is canceled by the opposing force on the submerged hulls, at the 

design wave frequency.  

To summarize, the assumptions of the linear wave theory are stated. The amplitude 

H/2 is small relative to the wave length λ, the pressure contribution from the term (u2 + 

w2)/2g is negligible, the local water depth d is uniform, the fluid is considered inviscid 

and irrotational. In addition, the fluid is incompressible and unstratified or homogeneous, 

the deflection force associated with the earth's rotation, the Coriolis force is negligible. 

Surface tension effects are negligible, the bottom is smooth and impermeable, and the sea 

level atmospheric pressure can be considered uniform.  

Dimensionless parameters are frequently used to characterize a wave train. The 

wave height is expressed in terms of (H/gT2), the wave steepness H/ λ or the relative 

height H/d. the water depth expression in terms of depth parameters (d/gT2) or (kd) or the 

relative depth d/ λ, for steeper waves in shallow water the ursell number U=H λ 2/d3 is 

often used as Figure (2.2). 

It is useful to note that depending upon the relative measure of water depth and 

wave length two extreme conditions of shallow and deep water can be described. The 

parameter (kd) specified the ranges over which certain approximations are applicable 

which appears in the denominator for the velocity potential, is defined as 

  

                                                                                 (2.29) 

  By Taylor series expansion  

                                                                                   (2.30) 

 

 

Therefore, for small kd lead to 

                                                                                      (2.31) 

 

And for large kd the term e-kd becomes quite small that lead to 

 

                                                                                             (2.32) 
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The shallow and deep water ranges corresponded to kd<π/10 and kd>π 

respectively, and over these ranges approximate expressions may be substituted for 

hyperbolic functions used to obtain flow field velocities as show in Table (2.2) 

 

Table 2.2: asymptotic forms of hyperbolic functions 

functions kd<π/10 kd>π 

Sinh(kd) 

Cosh(kd) 

Tanh(kd) 

Kd 

1 

kd 

ekd/2 

ekd/2 

1 

   

Substituting these into the last relation, we obtain the simplified expressions that 

summarized in Table (2.1). 

So we can divide the water depth to three categories as: 

1) Shallow water waves:  (1/25)> (d/ λ);   0.0025> d/gT2                                    

2) Intermediate water waves:  (1/25)< (d/ λ)<(1/2);   0.0025< d/gT2<0.08          

3) Deep water waves:  (1/2) < (d/ λ);   0.08< d/gT2                                              

It is not Uncommon (in engineering application) to use linear theory over a wider 

range.  Figure (2-2) shows the ranges of suitability for various theories. 

As waves start to become large compared to their length, the second- order terms 

present in Eqn. (2.17) and Eqn. (2.18) become increasingly important.  The inclusion of 

these terms in a stockes-type perturbation solution indicates that for H/ λ larger than 

approximately 0.006 and H/d<0.03, the wave profile changes from the sinusoidal from 

given in the linear solution.  The Stokes waves tend to have relatively long shallow 

troughs and sharper peaks.  As H/ λ becomes even larger, the waves finally break.  This 

breaking limit is reached when H/ λ approaches. 
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Figure 2.1: the wave propagation for linear wave theory 

 

 

Figure 2.2: the ranges of suitability for various theories (Bhattachargee, S.,1990). 
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2.3 Surface Elevation Modification 

 

Similar to the velocity potential, the expression for the water particle kinematics 

consists of the amplitude at the surface; the variation with depth given by attenuation in 

the form of a hyperbolic function; and a factor dependent on time and position of' the 

particle. For the extreme wave condition where the wave height is large, the effect of the 

variable free surface elevation needs to be considered. As shown in Eqn. (2.24) the depth  

Factor                          decays rapidly from still water level (MWL) to the sea floor and 

the wave kinematics near the water surface have a significant importance on the total 

wave force applied to the structure. To compute the hydrodynamic forces, the water 

particle kinematics has to be known at all positions of the structure. Linear wave theory 

however, can only evaluate the water particle kinematics up to the MSL to overcome this 

limitation. Several extrapolation methods have been suggested to evaluate the water 

particle kinematics between the MSL and the wave free surface. Some of the methods are 

(Jain, 1997):  

(a) Hyperbolic Extrapolation: This method, suggested by Hogben simply extends 

the water particle kinematics above the MSL in a hyperbolic manner. This, 

extrapolation has been proved to overestimate the forces on the structure and 

to be very conservative.  

(b) Linear Extrapolation: This method, used by Nwogu and Irani computes the 

water particle kinematics beyond the MSL by expanding the expression in a 

Taylor's series and neglecting second order and higher order terms. This 

method also leads to an over estimation of the total force.  

(c) Stretching methods: This is the most recommended method when the free surface 

effect is to be taken in to account in the analysis. These methods shift the 

water particle kinematics profile from the MSL to the free surface. Thus, the 

water particle kinematics decays exponentially between the wave surface and 

the sea bed. Meeler's approximation and Chakrabarti approximation have 

been suggested. Wheeler, 1969, replaced the term (z+d) in the numerator of 

hyperbolic extrapolation function by (z + d) d/ (d + η) so that the crest and 
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trough have the same particle velocity as Eqn. (2.24). Chakrabati, 1971, 

replaces the term d in the denominator of the hyperbolic function by (d + η).  

(d) Uniform Extrapolation: This method, used by Eatoek, Taylor et. al, assumes that 

the water particle kinematics in the crest region above the MSL are equal to 

their corresponding values at MSL.   

It is worth mentioning that Jain, 1997, showed that the Chakrabarti, 1971, 

approximation is better than other approximations and its results are very close to 

experimental values.  Therefore, this approximation will be utilized in the current study. 

 

 

 

 

 

 

Figure 2.3: the comparison of vertical distribution of horizontal water particle velocity 

for (A) Airy which is limited to MWL, (B)Extrapolation of linear wave theory, (C) 

Stretching of linear wave theory, and (D) Modified linear wave theory "Chakrabarti" 
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2.4 Wave Force 

 

There are basically two different approaches for evaluating wave loads on fixed 

and floating structures: 

1) Empirical formulae, relying heavily on experimental observation, physical 

insight and dimensional analysis. Examples include the Morison equation 

(by Morison et.al, 1950) and formulae for wave slamming, vortex shedding, 

etc. 

2) Theoretical methods, which solve the boundary value problem describing 

flow around the structure. These methods are usually based on the classical 

theory of potential flow. The wave diffraction method or potential theory 

(by Hogben and Standing, 1975) falls into this category. It is sometimes 

necessary to add empirical terms representing non-ideal fluid effects, such 

as viscous drag.  

The selection of the appropriate method of calculating wave loads is permanently 

governed by the size of the structure  as, compared to the length of the incident wave the 

Morison equation technique is generally considered tube valid when the diameter of a 

structural member (D), is small as compared to the length of the wave (λ), the method 

assumes that the kinematics of the undisturbed flow are not altered due to the presence of 

the structure and is generally considered  to be valid when D/ λ is less than 0.2  as the 

size of a structure, or any of its components, becomes large compared to the wave length 

(i.e. D/ λ greater than 0.2), the velocity and acceleration of the flow can not be considered 

constant over a distance equal to cylinder diameter in this case the presence of the 

structure begins to alter the incident flow field and the waves generally undergo 

scattering (or diffraction). Thus rendering the Morison equation invalid, therefore making 

it necessary to employ diffraction theory in order to determine the wave forces and the 

total force is determined by integrating the pressure evaluated from the superposition of 

the undisturbed pressure field and the pressure resulting from the disturbance of the flow 

field. 
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2.4.1 Wave Force Regimes 

 

Wave forces on structures are computed by a variety of methods. The choice of a 

particular method depends on the dimension of the structure relative to the characteristic 

dimensions of the wave.  

The parameters used to define these regimes for force computation purposes are 

cylinder diameter, D, peak to trough wave height, H, and the wave length, λ. 

For D/λ > 1: Condition approximates pure reflection of the waves by the structure:  

For D/λ > 0.2; Diffraction forces need to be considered.  

For D/λ ≤ 0.2: Morison equation is valid in this region.  

For 0.5 ≤ D/H ≤1: Inertia forces can be used to represent, the total force on the structure. 

For example, the large diameter structures like the columns supporting the decks of 

gravity type structures.  

For 0.1 ≤ D/H ≤ 0.5: both inertia and drag force need to be considered.  

For D/H = 0.2: Drag and inertia forces are comparable.  

For D/H ≤ 0.1: Drag forces can be used to represent the total force. An example being  

Small diameter members like conductor tubes etc. Where, viscous effects provide the 

primary force contributions.  

It is also worth noting at this point that the ratio D/H can be related to D/λ., based 

on the limiting heights of breaking waves. Waves become unstable and break when H/λ ≥ 

1/7. Thus for stable waves, D/H ≥ D/λ in a strict sense, the concept of orbital width 

should be used. Instead of the wave height for identifying the force regimes the orbital 

width is defined as 

(2.33)  

 

Note that in deep water tanh (kd) →1, whereby W = H in the above Eqn. (2.33).  

A very important assumption of Morison equation is that the waves are unaffected 

by the presence of the structure. This is justified only in case of relatively small diameter 

members. As indicated by the preceding relations, for members of larger diameters the 

diffraction and reflection effects become increasingly important, and Morison equation 

has to be replaced by diffraction theory that accounts for this (Chakrabarti, 1987).  
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2.4.2 Morison Equation  

 

A very convenient empirical method for predicting the hydrodynamic forces on 

slender structural members has been proposed by Morison et. al, 1950, the formulation is 

based on experimental studies of wave forces on a pile and is a heuristic approximation 

of the measured forces by the assumption that the kinematics of the undisturbed flow in 

the region near the structure do not change in the incident wave direction. This empirical 

model is most appropriate for slender members, and accounts for the viscous as well as 

the inertia forces in an unsteady flow. Originally formulated for predicting forces on a 

rigid pile, the model is extensively used for evaluating wave and current forces on 

various submerged structural elements of offshore platforms, according to this model the 

total force on the structure can be considered to be the algebraic sum of a drag force and 

an inertia force Figure (2.4).  

The drag force represents the contributions from viscous effects to the total force 

and attempts to incorporate the boundary layer and flow separation effects caused 

primarily by flow separation downstream from the cylinder. It depends on the fluid 

velocity in a quadratic manner, and linearly on the projected surface area. The drag force 

per unit length of a cylinder is defined as 

(2.34)  

 

and 

            (2.35) 

   

where, ρ is the fluid density, D is the diameter (or some characteristic dimension). 

U, is the undisturbed fluid velocity u, and current velocity Uc if exist, and Cd is the drag 

coefficient which is determined from experiments which the value of it ranges between 

0.5 to 2.0 depending on the flow situation and surface roughness and commonly used 

value for it is 1.0, the term U|U| is written in this form to ensure that the drag force 

component is in the same direction as the velocity.    

In the ocean, wave and current loading naturally occur simultaneously; current 

direction need not coincide with wave direction and may vary with depth. The speed may 
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also change with depth as shown in Eqn. (2.35), to present a realistic description a profile 

which may vary in both magnitude and direction with depth considered and also the 

current velocity always takes about 10% wind velocity at a height of 10 m above the 

water surface. 

The inertia force represents the contributions due to fluid acceleration and is 

present even under ideal fluid assumptions, and it is the force exerted by fluid while it 

accelerates and decelerates as the fluid passes the structure and it is also the force 

required to hold a rigid structure in a uniformly accelerated flow. The inertia force per 

unit length is expressed as  

(2.36) 

       

Where As is the cross-sectional area, the coefficient, Cm is the inertia coefficient 

associated with the geometrical shape of the structure, and usually derived from 

experiments and can be theoretically obtained only in some special cases which the value 

of it ranges between 0.6 to 2.0 depending on the geometry of the member and commonly 

used value for it is 2.0. 

According to this model the total force on the structure is the vectorial sum of these 

two forces. Thus, the total hydrodynamic force per unit length on a slender structural 

member subjected to an unsteady flow of a real fluid around it is given by 

 

(2.37) 

 

Other underlying assumption in formulating the Morison equation is: 

1) The equation is for unbroken surface waves. 

2) The equation is for a single vertical cylindrical object such as a pile which 

extends from the bottom upward above the wave crest. 

3) The diameter of the pile is small compared to the wave height, wave length and 

water depth. 

4) Coefficient Cm and Cd must be obtained experimentally. 

5) In force calculation, u is taken as horizontal wave particle velocity and the 

convective acceleration terms are often ignored, i. e., it is assumed that 
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(2.38) 

The values of the velocity and acceleration in this Eqn. (2.38) have to be known 

before the force can be evaluated. For computing forces due to waves or currents the 

velocity and acceleration in the flow field in the absence of the structural member is 

usually substituted. The true values of this kinematics in the presence of the solid body 

can be solved for only by considering the relatively complex fluid-Structure interaction 

problem. This simplification implies that the structural member does not affect the flow 

field significantly. This assumption is reasonably valid only for slender structural 

members, and hence the restriction of this model to small diameter members. For 

structural members of relatively larger dimension the diffraction and reflection effects 

play an increasingly important role. An assessment of the situations under which the 

different components play important roles are discussed in more detail in a following 

section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Wave force on a vertical cylinder 

λ 

D 



 

44 

 

dt

dx
A)1C()

dt

dx
U(

dt

dx
UDC5.0)

dt

dx

dt

du
(ACdF Smdsm











 

2.4.3 Modified Morison Equation  

 

Morison equation was derived for rigid piles, and due consideration is required 

when analyzing the force on moving structures, especially if the structure is very flexible 

Figure (2.5). In a more sophisticated formulation the forces are considered to depend not 

on the absolute velocity and acceleration of the water particles, but on their relative 

magnitudes with respect to the structure of interest. The added mass effect and the 

Froude Krylov force are direct consequences of this force. It depends on the fluid 

acceleration and the cross-sectional area of the member.  That is,  

 

    (2.39) 

Where x represent the displacement of the moving structure and the dots represent 

derivatives with respect to time. From Eqn. (2.39) it is noticed that the first term results 

from the fluid motion only and the second term is the added mass due to the movement 

of the cylinder in the water where the term (Cm-1) is generally represented by Ca which is 

called the added mass coefficient. The applicability of the model for rigid piles to the 

case of a moving structure is an empirical extension of this model. The same coefficients 

are used but in conjunction with the relative motions. Systematic experimental values of 

the coefficients to cover the general case of a moving structure are not available, and the 

above model is accepted by engineering community as a logical extension of the theory. 

        

The drag force term in Morison Eqn., can be simplified into a linear form using the 

assumption of (Penzien, 1976, Patel, 1989) because of the complicated of the absolute 

value integration as: 

     dzUU2UUDC
2

1
dzUUUUDC

2

1
dF xcdxxcdd                                (2.40) 

Where   


UU   is time independent and for cylindrical section and equal to  





3

He4
UU

kz




                                                                                                      (2.41) 
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Figure 2.5: a flexible cylinder 
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2.4.4 Modified Morison Equation for Inclined Cylinder 

 

If the cylinder is located between coordinates (X1, Y1, Z1) and (X2, Y2, Z2) relative 

to principal platform axis, then direction cosines can be defined as follows (Figure 2.6)  

L

XX
cos 12 

, L

YY
cos 12 

, L

ZZ
cos 12 

                                                  (2.42) 

 The components of the normal velocity and acceleration vectors for a segment of 

submerged portion of an arbitrarily inclined cylinder can be expressed in terms of the 

direction cosines (Patel, 1989) as  

 coscos)xw(sin)xu(u 3

2

1x

                                                                     (2.43)                                                                  

 coscos)xw(sin)xu(u 3

2

2y

                                                                    (2.44) 

 coscos)xu(sin)xw(u 1

2

3z

                                                                      (2.45)                                                                  
 

(2.46)                                                                                   

                                                                                     

(2.47) 

 coscosusinwu 2

z

                                                                                        (2.48)                                                                   

where, u, w and u•, w• are the horizontal and vertical water particle velocities and 

accelerations respectively. 

 

 coscoswsinuu 2

x

 

 coscoswsinuu 2

y

 
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Figure 2.6: Sketch of wave loading on an inclined cylinder 
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Chapter 3 

 

TLP DYNAMIC ANALYSIS 
 

3.1 Introduction 

      

TLPs have very long period of vibration associated with motions in the horizontal 

plane, and resonant responses in these degrees of freedom are associated with second- 

order nonlinear wave forces as well as wind load.  The periods of vibration associated 

with displacements in the vertical direction are much shorter than typical wave 

frequencies, and resonant responses in these degrees of freedom could be excited by non-

linear wave forces.  For example, the heave, pitch and roll natural periods are of the order 

of 3 seconds, and the surge, sway and yaw are of order of 50 second or more. Typical 

wave spectral peak are between 6 to 15 seconds. Thus, both groups of motion responses 

fall outside the wave spectral period range, the former group at the lower end, and the 

latter group on the upper end of the energy spectra plotted against wave period. 

Consequently, direct resonances, a situation where damping effects control the response 

are unlikely to occur. (Figure 3.1) 

For compliant structures, the inertia forces are predominant when they are 

dynamically excited. For such a situation, one has to perform rigorous dynamic analysis, 

and there exist two possibilities. One can do the linear analysis which is cheap and easy, 

but the major limitation to this is that one should be confident about the system being 

linear or nearly linear, such that the nonlinear effects, if present, are negligible. In order 

to incorporate the nonlinear phenomena, a nonlinear analysis has to be performed. 

Nonlinear effects can not be easily included in frequency domain analysis but best 

handled in the time domain analysis using Newmark's beta step-by-step numerical 

integration technique. In this chapter both analytical solutions for rectangular TLP and 

triangular TLP models will be carried out. 
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3.1.1 Structural Idealization and Assumptions  

The equation of motion of both of rectangular and triangular TLP model under a 

regular wave is given as: 

)}t(F{}x]{K[}x]{C[}x]{M[ o                                                                (3.1) 

Where 

{x} Is the structural displacement vector, 

{x˙} Is the structural velocity vector, 

{x¨} Is the structural acceleration vector, 

[M] Is the structure mass matrix, 

[C] Is the structure damping matrix, 

[K] Is the structure stiffness matrix, and 

{Fo (t)} Is the hydrodynamic force vector 

The mathematical model derived in this thesis based on that the platform and the 

tethers are treated as a single system and the analysis is carried out for the six degrees of 

freedom under different environmental loads where wave forces are estimated at the 

instantaneous equilibrium position of the platform by Morison’s equation using Airy’s 

linear wave theory, The effects of wave diffraction effects have been neglected and 

sheltering for wave forces have also been neglected and wave force coefficients, Cd and 

Cm, are the same for the pontoons and the columns and are independent of frequencies as 

well as constant over the water depth. 

  The following assumptions were made in the analysis: 

1. Initial pre-tension in all tethers is equal and remains unaltered over time. It is 

quite large in comparison to the changes that occur during the life time of the 

TLP. However, the total pre-tension changes with the motion of the TLP. 

2. Change in pre-tension is calculated at each time step, and writing the equation of 

equilibrium at that time step modifies the elements of the stiffness matrix. 

3. The platform has been considered symmetrical along the surge axis. 

Directionality of wave approach to the structure has been ignored in the analysis 

and only a uni-directional wave train is considered. 

4. The damping matrix has been assumed to be mass and stiffness proportional, 

based on the initial values. 
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5. The force on tethers (gravity, inertia, drag, hydrostatic and hydrodynamic forces) 

has been neglected because of its small area and also the tether curvature is not 

significant in motion, only the axial forces acting on tethers have been 

considered. 

6. Hydrodynamic forces on connecting members and mooring legs have been 

neglected. 

7. The wave, current and structure motions are assumed to occur in the same plane 

and in the same direction, the interaction of wave and current has been ignored. 

8. Integration of hydrodynamic inertia and drag forces are carried out up to the 

actual level of submergence as suggested by Chakrabarti, 1971, when variable 

submergence is considered. 

 

3.1.2 Mathematical Model of TLP 

3.1.2.1 Mass Matrix, [M] 

The motion of a platform is described by the platform-fixed coordinate system 

(Figure 3.2). 

Global structure mass matrix [M] can be written in the following form 



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
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0
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0
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][

JJJMrMr
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JJJMrMr

MrMrM

MrMrM

MrMrM

M                                           (3.2) 

Where;  

   M is the mass of the body,  

  ir  is  the location  of  the mass  center with  respect  to  the platform- fixed coordinate 

system and  equal zero  if  the fixed  coordinate is the mass center  so 0321  rrr  

iij  Is moments of inertia =   dmrr kj )( 22    ,                                                               (3.2.1) 

ijj  Is products of inertia =  dmrr ji )(      ,                                                                  (3.2.2) 

    And Jij is equal to zero if the fixed coordinates is the mass center 
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The added mass, Ma, is due to the water surrounding the structural members and 

arising from the modified Morison equation has been considered up to the mean sea level 

(MSL) only when we calculate the damping and the natural time period. The fluctuating 

component of added mass due to the variable submergence of the structure in water is 

considered in the force vector depending upon whether the sea surface elevation is above 

(or) below the MSL that is when the coupling effect take into account but when we 

discuss the uncoupling effect we add the total added mass in the force vector. the added 

mass will be
 


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
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







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MMMM
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M                               (3.4) 

Where, the one-half of the symmetrical added mass matrix coefficients are  


L

aa dLACM )sin()1,1( 2 ,                                                                                                     (3.4.1) 


L

aa dLACM )sin()2,2( 2  ,                                                                                   (3.4.2) 


L

aaa dLACMM )coscos()1,3()3,1(  ,                                                         
(3.4.3) 


L

aaa dLACMM )coscos()3,2()2,3(  ,                                                        (3.4.4) 

XMZMMM aaaa )3,1()1,1()1,5()5,1(  ,                                                        
      (3.4.5) 

YMZMM aaa )3,1()2,2()4,2(  ,                                                                             (3.4.6) 


L

aa dLACM )sin()3,3( 2  ,                                                
                                    (3.4.7) 

XMZMMM aaaa )3,3()3,1()3,5()5,3(  ,
                                                            (3.4.8) 

YMZMMM aaaa )3,3()3,2()3,4()4,3(  ,                                                            (3.4.9) 

22 )3,3())(3,1(2)1,1()5,5( mamamaa ZMZXMXMM  ,
 and                                    (3.4.10) 
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22 )3,3())(3,2(2)2,2()4,4( mamamaa ZMZYMYMM                                           (3.4.11) 

22 )1,1()2,2()6,6( mamaa XMYMM                                                                         (3.4.12) 

YMMM aaa )1,1()1,6()6,1(                                                                                (3.4.13) 

XMMM aaa )2,2()2,6()6,2(                                                                            (3.4.14) 

Where, 

4

2D
A


                                                                                                                    (3.4.15) 
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2

21 YY
Y




,                                                                             
                                 (3.4.17) 

2

21 ZZ
Z


 ,                                                                                                             (3.4.18) 

3

2

221

2

12 XXXX
Xm


 ,                                                                                           (3.4.19)

 

3

2

221

2

12 YYYY
Ym


                                                                                                  (3.4.20) 

3

2

221

2

12 ZZZZ
Zm


 ,                                                                                               (3.4.21) 
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, and                         
                                 (3.4.22)

 

6

22
)( 12212211 YZYZYZYZ

ZY m
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                                                                      (3.4.23) 

Where, every term of these matrices will be determined in the later section 

according to the specific type of TLP. 
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Figure 3.1: Wind and wave spectra relative to the fixed and TLP structures (Kareem, 

1987) 

 

 

Figure 3.2: The global and local coordinate system of TLP 
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3.1.2.2 Structural Stiffness Matrix 

A TLP is basically a floating structure held to the sea floor through pretensioned 

cables.  The pretension in the cables is a result of the excess buoyancy of the platform.  

The stiffness of the platform is derived from a combination of hydrostatic restoring 

forces and restoring forces due to the cables. Restoring force for motions in the 

horizontal plane (surge, sway, and yaw) are the horizontal component of the pretension 

in the cables (Figure 3.2), while restoring forces for motions in the vertical plane arise 

primarily from the elastic properties of the cables, with a relatively small contribution 

due to hydrostatic forces.  

The coefficients, Kij, of the stiffness matrix of the rectangle TLP are derived as the 

reaction in the degree of freedom i due to unit displacement in the degree of freedom j, 

keeping all other degrees of freedom restrained. The coefficients of the stiffness matrix 

have nonlinear terms. Furthermore, the tether tension changes due to the motion of the 

TLP in different degrees of freedom make the stiffness matrix response-dependent.   

 

3.1.2.3 Structural Damping [C] 

    The damping matrix [C] is equal to 

[C]= [cs] + [B] + [cH] + [cw]                                                                                          (3.5) 

Where, 

[cs] Is the structure damping mass matrix is assumed to be mass and restoring force 

proportional, 

[B] Is the radiation damping matrix and is neglected, 

[cH] Is the hydrodynamic drag damping and is included in the force vector, and 

[cw] Is the aerodynamic damping and is neglected in this thesis since wind effect is not 

taken into account. 

So the damping matrix is only equal to structural damping matrix.  It can be written 

in the following form (Chopra, 1995): 

m
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
                                                                                             (3.6) 
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Where;  n  and n are the mode shapes and structure's natural frequencies, n  is the 

structural damping ratio, C  is the damping matrix,  m  is the total structure mass matrix 

and nM  is the corresponding element of the     n

T

n m   

       This matrix is calculated based on the initial values of [K] and [M] depending on the 

type of the platform.  

 

3.1.2.4 Hydrodynamic Force Vector, {F (t)} 

Water particle kinematics is evaluated using Airy’s linear wave theory. This 

description assumes the wave form whose wave height, H, is small in comparison to its 

wave length, L, and water depth, d. Knowing the water particle kinematics, the 

hydrodynamic force vector is calculated in each degree of freedom. Only a uni-

directional wave train is considered in the surge direction.  The force vector F (t) is given 

as: 

    T
FFFFFFtF 615141312111)(                                                                       (3.7) 

     The hydrodynamic force attracted by the members in the surge, sway and heave 

degrees of freedom are computed and designated as F11, F21 and F31, respectively. The 

moment of these forces about the x, y and z axes are designated as F41, F51 and F61, 

respectively taking anticlockwise moments negative. 

Since the wave is unidirectional, there would be no force in the sway degree-of-

freedom F21 and hence there will be no moment in the roll degree of-freedom F41. 

Because of the vertical water particle velocity and acceleration, the heave degree-of-

freedom would experience wave force F31. The force in the surge direction F11 on the 

vertical members will cause moment in the pitch degree-of-freedom F51. However, forces 

in the surge degree-of-freedom are symmetrical about the x- axis (due to the symmetry of 

the platform to the approaching wave) and there will be no net moment caused in the yaw 

degree-of-freedom F61. 

So due to a uni-directional wave train in the surge direction the values of 

F21=F41=F61=0 but F11, F31, F51 have values that depend on type of TLP. 
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3.2 Development of a Rectangle TLP model 

 

3.2.1 Draft Evaluation 

At the original equilibrium position (Figure 3.3), summation of forces in the 

vertical direction gives: 

Bt FTW                                                                                                                      (3.8) 

So; 

Bo F)T4(W                                                                                                               (3.9) 

And, 

)sD2sD2DD4(g25.0F b

2

pa

2

pr

2

cB                                                                     (3.10)          

From Eq. (3.11), we get: 

 

                                           (3.11)                                          

 

   Where, FB is the total buoyancy force, W is the total weight of the platform in air, Tt is 

the total instantaneous tension in the Tethers, To is the initial pre-tension in the tether, p 

is the mass density of sea water, Dc is the diameter of TLP columns, Dp is the diameter of 

pontoon, Sa, Sb is the length of the pontoon between The inner edges of the columns in 

the x, y direction respectively, and Dr is the draft.  

 

3.2.2 Stiffness Matrix of the Rectangle TLP Configuration 

As shown in section (3.1.2.2) the coefficients of the stiffness matrix [K] of a 

rectangle TLP are: 
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And can be determined as  


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Figure 3.3: The rectangular TLP (plan and elevation). 
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3.2.2.1 Surge (1) Direction (Figure 3.4) 

The coefficients of the first column of the restoring force matrix are found by 

giving a unity x displacement in the x-direction (surge): 

   The increase in the initial pretension in each leg is given by: 

L

L
A

T

Strain

Stress
E







1

                                                                                                 (3.13) 

Where; 
L

LAE
T


 1                                                                                             (3.14) 

              LLxL  22

1                                                                                         (3.15) 

Where, A is the cross-sectional area of the tether, E is Young’s Modulus of the tether, 1T  

is the increase in the initial pre-tension due to the arbitrary displacement given in the 

surge degree of freedom, L is the length of the tether, and x1 is the arbitrary displacement 

in the surge degree of freedom.  

Equilibrium of forces in the surge direction gives 

111x1 xKsin)TTo(4Fx                                                                                  (3.16) 

Where, x  is the angle between the initial and the displaced position of the tether for unit 

displacement given in the surge direction. 
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
      ,    
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
                                                               (3.17) 

Substitute (3.17) into (3.16) 
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                                                                                                 (3.19) 

Through summation of the vertical forces, we get: 

Bx1o131 FWcos)TT(4xKFy                                                                  (3.20) 
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 

1

x1xo
31

x

cosT4)1(cosT4
K

 
                                                                     (3.21) 

Summation of moments about the x-axis gives: 

O KxKOMx 41141                                                                                        (3.22) 

Summation of moments about the y-axis gives: 

151111x xKxhKhFMy                                                                              (3.23) 

Where, h is the distance between the center of mass and the bottom of the platform 

(Figure 3.5).  

)hK(K 1151                                                                                                        (3.24) 

The negative sign occurs due to the counterclockwise moment 

Summation of moments about the z-axis gives: 

OKxKOMz 61161                                                                                        (3.25) 

These coefficients agree well with other researchers as Jain, 1997, and Ali, 1996. 

 

3.2.2.2 Sway (2) Direction (Figure 3.5)  

 The coefficients of the second column of the restoring force matrix are found in a 

similar manner by giving a unity y displacement in the y-direction (sway): 

K12 = O    , K52 = O    and   K62 = O                                                                            (3.26) 
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                                                                     (3.28) 

2242 KhK                                                                                                               (3.29) 

The negative sign occurs due to the counter clockwise moment. 

Where 2T  is the increase in tension due to sway and y  is the angle of inclination 

of the cables with respect to the vertical when under sway movement 

Where; 
L

LAE
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                                                                                             (3.30) 
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              LLxL 22

2                                                                                           (3.31) 
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
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These coefficients also agree with these presented by Jain1997, Ali, 1996. 

 

3.2.2.3 Heave (3) Direction: 

The third column is derived by giving the structure an arbitrary displacement in the 

z direction (heave). The sum of the forces in the all direction yield: 

   0MMyMxFyFx z                                                                  

0KKKKK 6353432313                                                                                  (3.33) 

The sum of the forces in the vertical direction yields 
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Where, x3 is the displacement in the heave direction, 
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By subtracting Eqn. 3.38 from Eqn. 3.37, we obtain   
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From Eqn. (3.38) and Eqn. (3.34)  

b33 F4K                                                                                                          (3.39) 

These also coefficients also agree with Jain1997, and Ali, 1996. 



 

61 

 

 

Figure 3.4: The Surge displacement in a rectangular TLP. 

 

Figure 3.5: The Sway displacement in a rectangular TLP. 
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3.2.2.4 Roll (4) Direction (Figure 3.6)    

The coefficients of the fourth column of the restoring force matrix are found by 

giving the structure in arbitrary rotation x4 about the x-axis. Summation of the moments 

of the resulting forces about the x-axis give: 

K14 = K54= K64= 0                                                                                                       (3.40) 

The change in the initial pretension in each leg is obtained by examining the 

geometry of Figure 3.6 as following: 

     

 

 

 

 

 

(3.41) 

                        

                       (3.42) 

                                                                             (3.43) 

                                        (3.44) 

 

By taking summation of forces in y-axis we find 

                                                                                                                                     (3.45) 

                                                                                                                        

                                                                                                                                     (3.46) 

 

By taking summation of forces in z-direction we find 

 

    (3.47) 

 

        (3.48) 
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By taking summation of moment about x axis we find 

 

             (3.49) 

 

 

 

    

      (3.50) 

 

 

Most researchers assumed that the tether remains vertical so θ24=θ14=0 (angle of 

inclination is vary small) and also assumed that distance e14=e24, h14=h24  

From that 42414 x
L

EA
TT   , 0T    

This leads to 0KK 3424                                                                                      (3.51) 

  404B241444 x/eF)bT(2)bT(2K                                                                  (3.52) 

 

3.2.2.5 Pitch (5) Direction (Figure 3.7)    

The coefficients of the fifth column of the restoring force matrix are found by 

giving the structure an arbitrary rotation x5 about the y-axis. Summation of the moments 

of the resulting forces about the y-axis gives:  

K25 = K45= K65= 0                                                                                                  (3.53)  

The change in the initial pretension in each leg is obtained by examining the 

geometry of Figure 3.7 as following: 
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Figure 3.6: The Roll displacement in a rectangular TLP. 
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(3.55)                                                                                      

    (3.56)          

      (3.57) 

  

By taking summation of forces in x-direction 
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   (3.59) 

 

By taking summation of forces in z-direction we find 

 

    (3.60) 

                                                                                          

(3.61) 

y taking summation of moment about y-axis we find 
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 Most researchers assumed that the tether remains vertical so θ25=θ15=0 (angle of 

inclination is vary small) and also assumed that distance e15=e25, h15=h25  

From that 52515 x
L
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TT   , 0T    
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Figure 3.7: The Pitch displacement in a rectangular TLP. 
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This leads to 0KK 3515                                                                                      (3.64) 

  505B251544 x/eF)aT(2)aT(2K                                                                  (3.65) 

 

3.2.2.6 Yaw (6) Direction (Figure 3.8)  

By giving an arbitrary rotation 6x in the yaw degree of freedom, the sixth column 

of the restoring force matrix can be obtained.  The summation of the moment about the z-

axis gives: 

K16= K26 = K46 = K56= O                                                                                             (3.66) 
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                                                                             (3.68) 

 

The change in the initial pre-tension in each leg is given by: 
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By taking summation of moment about z-axis we find 

 

                                                         (3.70) 
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Finally, through summation of forces in the vertical direction one obtains: 
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These coefficients also agree with Jain, 1997, and Ali, 1996. 
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The stiffness matrix shows: 

1- The presence of off-diagonal terms, which reflects the coupling effect 

between the various degrees of freedom, 

2- The coefficients depend on the change in the tension of the tethers, which 

is affecting by the buoyancy of the system. Hence, the matrix is response 

dependent. 

Hence, the stiffness matrix [K] is not constant for all time instants, but the 

coefficients are continuously changing at each time step depending upon the response 

value at the previous step.  

 

3.2.3 Mass Matrix, [M] 

       As shown in section (3.1.2.1) [M] is assumed to be lumped at each degree of 

freedom. Hence, it is diagonal in nature and is constant   
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Where; 

xr Is the radius of gyration about the x -axis, 

yr Is the radius of gyration about the y -axis, 

zr Is the radius of gyration about the z -axis, 

 

Using the added mass, Ma we obtain all terms of the mass matrix (refer to Eqn. 

3.4).  These terms can be obtained as follows  
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Figure 3.8: The Yaw displacement in a rectangular TLP. 
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3.2.3.4 Roll Direction  
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3.2.3.5 Pitch Direction  
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3.2.3.6 Yaw Direction 
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The presence of off diagonal terms in the mass matrix indicates a contribution in 

the added mass due to the hydrodynamic loading. The loading will be attracted only in 

the surge, heave and pitch degrees of freedom due to the unidirectional wave acting in 

the surge direction on a symmetric configuration of the platform about the x and z axes. 

Therefore, added mass matrix can be written as: 
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3.2.4 Structural Damping 

Appling Eqn. (3.6) in section (3.1.2.3) we get the mode shape as 
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        And the damping matrix will be  
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It should be noticed that motion in direction z depends on motion in all directions, 

in agreement with Jain, 1997, and Ali, 1996. But motion in direction (4) depends on 

direction (2) and direction (3) motion contrary to Jain, 1997, and Ali, 1996, where they 

assumed that it is independent. Moreover motion in direction (5) depends on direction (1) 

and direction (3) motions contrary to Jain, 1997, and Ali, 1996, where they assumed that 

it is independent. 

 

3.2.5 Hydrodynamic Force Vector, {F (t)} on Rectangular TLP 

As shown in section (3.1.2.4) the hydrodynamic force attracted by the members 

due to a uni-directional wave train in the surge direction {F (t)} is given by Eqn. (3.8) 

and the values of F21=F41=F61=0.  Expressions for F11, F31, and F51 can be obtained as 

following: 
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3.2.5.1Surge Force F11 

The horizontal surge force on the TLP contributions to the surge force from 

horizontal forces on the hulls (pontoons) and vertical columns, Figure (3.3). 

      

The inertia surge force on a single column located at distant x from the wave crest, 

is obtained by  
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crest, is obtained by  
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Where Ux is the body velocity in surge direction, and Uc is the current velocity 

So total surge force on columns equal 

65876587 111111111 dcdcdcdcicicicicC FFFFFFFFF                     (3.109) 

The inertia surge forces are experienced only by the hull aligned normal to the 

direction of wave propagation. Thus an inertia surge force varies only due to wave action 

on hull 3 and 4 and is obtained by: 
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direction of wave propagation. Thus drag surge forces varies only on hull 3 and 4 and is 

obtained by 

 

 (3.114) 

 

 

 

(3.115) 

 

  

3ip

4ip

koh
2

m

2

P
ip

koh
2

m

2

Pb

b
ip

1Fax

1Fax

Sb)tkxsin(He
2

C
4

D
1F

dy)tkxsin(He
2

C
4

D
1F


































































































































SbU  U
d

dh
)tkxcos(e

T

H

UU
d

dh
)tkxcos(

kh
e

T

H

p
D

d
C

2

1

dy

U  U
d

dh
)tkxcos(e

T

H

UU
d

dh
)tkxcos(

kh
e

T

H

p
D

d
C

2

1

1F

xC
okoh

xC
oo

xC
okoh

xC

oob

b

dp

















(3.108) 

(3.107) 



 

76 

 

(3.116) 

(3.117) 

So total surge force on hulls equal  

4343 11111 dpdpipipp FFFFF                                                                      (3.118) 

So the total surge force F11 

                                                                                               (3.119) 

 

3.2.5.2 Heave Force F31 

The vertical wave force on TLP results from several factors: 

(1) The dynamic pressure at the bottom of the columns. 

(2) The forces on the hulls. 

(3) The change of the instantaneous waterline on the columns. 

     

  Effect of the dynamic pressure at the bottom of the columns can be obtained as:  
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With further assumption that column diameter is small compared to the wave 

length, so that the dynamic pressure can be assumed to be constant across the bottom 

surface, the vertical columns force is  
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The magnitude of vertical force, hulls 3 and 4, is constant along the hull length and 

the integration reduces to a simple multiplication. So the inertia force 

 

(3.125) 

(3.126) 

CP FFF 1111 

8c7c

6c5c

kch
2

c

3F3Fax

3F3Fax

)tkxcos(e
2

H
g

4

D
areapresureforce






 



Sb)tkxcos(He
2

C
4

D
3F

dy)tkxcos(He
2

C
4

D
3F

koh
2

m

2

P
ip

koh
2

m

2

Pb

b
ip























3dp

4dp

1Fax

1Fax







 

77 

 

(3.127) 
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Also the drag force will be 
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Where, Uv is the body velocity in heave direction and Uc is the current velocity 

  The magnitude of vertical force, hulls 1 and 2, is varied along the hull length and 
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So total heave force on hulls equal  

21432143 333333333 dpdpdpdpipipipipp FFFFFFFFF                (3.137)                                             

 

Finally the total heave force F31 

                                                                                              (3.138)                                                                                              

 

3.2.5.3 Pitch response F51 

The pitching behavior of a rectangle TLP is some what different from that of a free 

floating body like a ship or a semi submersible.  In the latter case the restoring moment is 

provided by the action of emerged and immersed volumes around the water plane.  In 

contrast for a TLP, the pitch restoring moment is provided primarily by changes in the 

tether tension due to elastic deformation. This effect outweighs, by far, the contributions 

due to changes in column submergence. In strict senses, the pitching access is one about 

which moment of all the forces (including elastic tether deformation) are zero. The tether 

deformation, in turn, depends on the location of the pitching axis. Thus, explicit solution 

for the location of the pitch access is not possible. Here, it would be assumed that the 

pitch access is at the level of the connection of the tethers to the columns (kirk and Etok, 

1979).  

 

  The contribution to pitching moment comes from four sources: 

1) The horizontal acceleration on all vertical columns.  

2) The horizontal acceleration on hulls aligned normal to the direction of                 

wave propagation. 

3) The vertical acceleration of the wave particles on hulls 1, 2, 3 and 4.  

4) The dynamic pressure variation on the bases on the four corner columns. 

       

The horizontal acceleration on hulls 1 and 2 have no contribution to the pitch 

moment.  However, the horizontal force on hulls 3 and 4 produces a pitch moment. This 

is obtained by multiplying the horizontal force with the lever, measured from the 

pitching axis. Thus, the pitching moment from hulls 3 and 4 can be obtained as 

following: 
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       So total surge pitching moment on hull is 
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The inertia surge pitching moment on a single column located at x from the wave 

crest, is obtained by  
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And the drag surge pitching moment is: 
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So total surge moment on TLP will be 

pc MHMHMH                                                                                                (3.158) 

To calculate the vertical pitching moment on hulls, first, consider hulls 1 and 2 

aligned along the direction of wave propagation. The vertical pitching moment on these 

hulls is given as 
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  And the vertical drag moment will be 
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Next, consider the effect of the vertical acceleration on hulls 3 and 4. These hulls 

are parallel to the Crestline, and the force per unit of length is constant along the length 

of the hull. The pitch inertia vertical moment is obtained by multiplying the vertical 

force, derived for heave excitation, by the lever distance from the centerline so the force 

on these hulls will be: 

 

(3.161) 

(3.160) 

(3.162) 

(3.159) 



 

82 

 

4ip

3ip

b

koh
2

m

2

P
ip

koh
2

m

2

Pb

b
ip

MVax

MVax

xS)tkxcos(He
2

C
4

D
2MV

xdy)tkxcos(He
2

C
4

D
2MV



























 

Also the drag vertical pitching moment will be 
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So total heave pitching moment on hull will be  
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For calculating the vertical pitch moment on columns, the exposed base of the 

corner columns i.e. all columns of the TLP experience a hydrostatic pressure which has 

no contribution to the pitch moment, when the integration is taken to the still waterline. 

However, there is dynamic pressure variation due to the passage of the waves whose net 

contribution is non zero. The associated pitching moment arising from this is given by   
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So total heave pitching moment on columns will be 
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 8765 ccccc MVMVMVMVMV                                                                  (3.175) 

So total heave pitching moment on TLP will be 

 CP MVMVMV                                                                                                (3.176) 

So total pitching moment on TLP will be  
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3.3 Development of a Triangular TLP Model 

The same development for the rectangle model will be carried out, except that we 

have only three tethers instead of four. At the original equilibrium position (Figure 3.9).  

 

3.3.1 Draft Evaluation 

Summation of forces in the vertical direction given by Eqn. (3.8) and Eqn. (3.9) 

applies with the exception that we have three tethers instead of four.                                                                                                               
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3.3.2 Stiffness Matrix of the Triangular TLP Configuration 

As shown in section (3.1.2.2) the coefficients of the stiffness matrix [K] of a 

rectangle TLP are:  





























66

5551

4442

363534333231

2422

1511

00000

0000

0000

0000

0000

][

K

KK

KK

KKKKKK

KK

KK

K                                           (3.180) 

And can be determined as following 
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Figure 3.9: The triangular TLP (plan and elevation) 
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3.3.2.1 Surge (1) direction (Figure 3.10) 

By giving an arbitrary displacement x1 in the surge direction, the increase in the 

initial pretension in each leg is calculated as rectangular TLP as following:  

Equilibrium of forces in the surge direction gives 

111x1o xKsin)TT(3Fx                                                                                (3.181) 

From Eqn. (3.13), Eqn. (3.14), Eqn. (3.15) and Eqn. (3.17) 

111
22

1

1
1o xK

Lx

x
)TT(3 


                                                                                  (3.182) 

22

1

1o
11

Lx

)TT(3
K







                                                                                                (3.183) 

Through summation of the vertical forces, we get: 

 

Bx1o131 FWcos)TT(3xKFy                                                           (3.184) 

 

1

x1xo
31

x

cosT3)1(cosT3
K

 
                                                              (3.185) 

Summation of moments about the x-axis gives: 

O  K xKOMx 41141                                                                                  (3.186) 

Summation of moments about the y-axis gives: 

151111x xKxhKhFMy                                                                        (3.187) 

)hK(K 1151                                                                                                      (3.188) 

The negative sign occurs due to the counter clockwise moment 

Summation of moments about the z-axis gives: 

OKxKOMz 61161                                                                                (3.189) 

Also these coefficients agree well with other researchers (Ex. Jain, 2002). 

 

3.3.2.2 Sway (2) Direction (Figure 3.11) 

The coefficients of the second column of the restoring force matrix are found in a 

similar manner by giving x2 displacement in the y-direction (sway) 

K12 = O                                                                                                                      (3.190) 
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The negative sign occurs due to the counterclockwise moment 
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And also Eqn. (3.30), Eqn. (3.31) and Eqn. (3.32) can be applied. 

Also these coefficients agree with these presented by Jain, 2002. 

 

3.3.2.3 Heave (3) Direction: 

The third column is derived by giving the structure an arbitrary displacement z in 

the z direction (heave). The sum of the forces in the all direction yields:  
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The summation of the forces in the vertical direction yields 
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Where x3 is the displacement in the heave direction, 
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By subtracting Eqn. (3.200) from Eqn. (3.199) we get 
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From Eqn. (3.201) and Eqn. (3.198) we get                                                                                             
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Figure 3.10: The Surge displacement in a triangular TLP. 

 

 

Figure 3.11: The Sway displacement in a triangular TLP. 
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Where, γ is given by Eqn. (3.35). 

These coefficients also agree with those of Jain, 2002. 

 

3.3.2.4 Roll (4) Direction (Figure 3.12): 

The coefficients of the fourth column of the restoring force matrix are found by 

giving the structure an arbitrary rotation x4 about the x-axis. Summation of the moments 

of the resulting forces about the x-axis gives: 

K14 = K54= K64= 0                                                                                                     (3.203) 

The change in the initial pretension in each leg is obtained by examining the 

geometry of Figure 3.12.  So,  
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By taking summation of force in sway direction we get 
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Figure 3.12: The Roll displacement in a triangular TLP. 
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By taking summation of force in heave direction we get 
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By taking summation of moment in roll direction we get 
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3.3.2.5 Pitch (5) Direction (Figure 3.13) 
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By taking summation of moment in pitch direction we get 
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3.3.2.6. Yaw (6) Direction (Figure 3.14) 

By giving an arbitrary rotation x6 in the yaw degree of freedom, we get the sixth 
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The change in the initial pretension, in each leg, is given by Eqn. (3.66). 

By taking summation of force in surge direction we get 
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By taking summation of moment in the roll direction one obtains: 
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These coefficients are agreement with Jain, 2002. 
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Figure 3.13: The Pitch displacement in a triangular TLP. 
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The stiffness matrix shows: 

1- The presence of off-diagonal terms, which reflects the coupling effect 

between the various degrees of freedom; 

2- The coefficients depend on the change in the tension of the tethers, which is 

affected by the buoyancy of the system. Hence, the matrix is response 

dependent. 

Hence, the [K] is not constant for all time instants, but the coefficients are replaced 

by new values computed at each time step depending upon the response values at the 

previous time step. 

 

3.3.3 Mass Matrix, [M] 

As shown in section (3.1.2.1) [M] is assumed to be lumped at each degree of 

freedom. Hence, it is diagonal in nature and is constant and given by Eqn. (3.75).   

Now we deduce every coefficient on Eqn. (3.4).  
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Figure 3.14: The Yaw displacement in a triangular TLP. 
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The presence of off diagonal terms in the mass matrix indicates a contribution in 

the added mass due to the hydrodynamic loading. The loading will be attracted only in 

the surge, heave and pitch degrees of freedom due to the unidirectional wave acting in 

the surge direction on a symmetric configuration of the platform about the x and z axes.  

So added mass matrix will be as Eqn. (3.96) in section (3.2.3). 

 

3.3.4 Structural Damping 

Appling Eqn. (3.7) in section (3.1.2.3) we get the mode shape as 
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And the damping matrix will be  
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It should be noticed that motions in all directions depend in each other contrary to 

Jain, 2002. 



 

101 

 

 

 kchkx
m

2

c
6ci

kchkx
m

2

c
4ci5ci

ee)t -)
3

Pb2
sin((k 

2

H
gC

4

D
 1F

3

Pb2
x   at columns  for

ee)t -)
3

Pb
sin((k 

2

H
gC

4

D
 21F1F

3

Pb
x   at columns  for
































3.3.5 Hydrodynamic Force Vector, {F (t)} on Triangular TLP 

As shown in section (3.1.2.4) the hydrodynamic force attracted by the members 

due to a uni-directional wave train in the surge direction  {F (t)} is given by Eqn. (3.8) 

and The values of F21=F41=F61=0.  Terms F11, F31 and F51 have values which can be 

obtained as following 

 

3.3.5.1 Surge Force F11 

The horizontal surge force on the triangular TLP results from contributions from 

horizontal forces on the hulls (pontoons) and vertical columns, Figure (3.8). 

     

The inertia surge force on a single column located at distant x from the wave crest, 

is obtained by Eqn. (3.101) so, 

 

 

 

 

 

 

 

Also the drag surge force on a single column located at x from the wave crest is 

obtained by Eqn. (3.106). 
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   So the total surge force on columns will be 
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The inertia surge forces are experienced only by the hull aligned normal to the 

direction of wave propagation. Thus an inertia surge force varies only due wave action 

on hull 1 and 2 and is obtained by 
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Also the drag surge forces are experienced only by the hull aligned normal to the 

direction of wave propagation. Thus drag surge force varies only on hull 1and 2 and is 

obtained by 
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So total surge force on hulls equal  
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Finally the total surge force F11 

                                                                                                (3.284) 

 

3.3.5.2 Heave Force F31:- 

The vertical wave force on TLP results from several effects: 

(1) The dynamic pressure at the bottom of the columns. 

(2) The forces on the hulls. 

(3) The change of the instantaneous waterline on the columns. 

    

Effect of the dynamic pressure at the bottom of the columns can be obtained as 

Eqn. (3.120). 

    

With further assumption that the columns diameter is small compared to the wave 

length, so that the dynamic pressure can be assumed to remain constant across the bottom 

surface.  The vertical columns force can be obtained from Eqn. (3.121).  
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The magnitude of vertical force, hull 3, is constant along the hull length and the 

integration reduces to a simple multiplication. So, the inertia force is 
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The magnitude of vertical force, hulls 1 and 2, is varied along the hull length and 

the integration reduces to a simple multiplication so the inertia force 
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Also the drag vertical force on hull 3 will be 
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Also the drag vertical force on hulls 1 and 2 will be 

(3.288) 

(3.289) 

(3.290) 

(3.291) 
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So total heave force on hulls equal  

321321 3333333 dpdpdpipipipp FFFFFFF                                         (3.296)                                             

So the total heave force F31 

                                                                                             (3.297)                                                                                              

 

3.3.5.3 Pitch Response F51 

The pitching behavior of a triangular TLP is some what different from that of a free 

floating body like a ship or a semi submersible.  In the latter case the restoring moment is 

provided by the action of emerged and immersed volumes around the water plane. In 

contrast for a TLP, the pitch restoring moment is provided primarily by changes in the 

tether tension due to elastic deformation. This effect outweighs, by far, the contributions 

due to changes in column submergence. In strict senses, the pitching access is one about 

which moment of all the forces (including elastic tether deformation) are zero. The tether 

deformation, in turn, depends on the location of the pitching axis. Thus, explicit solution 

for the location of the pitch access is not possible. Here, it would be assumed that the 

pitch access is at the level of the connection of the tethers to the columns (kirk and Etok, 

1979). The contribution to pitching moment come from four sources: 

1) The horizontal acceleration on all vertical columns.  

2) The horizontal acceleration on hulls aligned normal to the direction of wave 

propagation. 

3) The vertical acceleration of the wave particles on hulls 1, 2 and 3. 

4) The dynamic pressure variation on the bases on the three corner columns. 

 

CP FFF 3331 

(3.294) 

(3.295) 
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The horizontal force on hulls 3 produces a pitch moment. This is obtained by 

multiplying the horizontal force with the lever, measured from the pitching axis as:  
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So total surge pitching moment on hull is 

 321321 ipipipdpdpdpp MHMHMHMHMHMHMH                         (3.306) 

The inertia surge pitching moment on a single column located at x from the wave 

crest, is obtained by Eqn. (3.149) so, 
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Also for drag force pitching moment on columns can obtain from Eqn. (3.154) so, 
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So total horizontal pitching moment on columns will be 

 654654 dcdcdcicicicc MHMHMHMHMHMHMH                         (3.310) 

So total surge moment on TLP will be 

pc MHMHMH                                                                                                 (3.311) 

For calculating vertical pitch moment on hulls first, consider hulls 1 and 2 aligned 

along the direction of wave propagation. The pitching moment on these hulls is given as 
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Next, consider the effect of the vertical acceleration on hull 3. This hull is parallel 

to the Crestline, and the force per unit of length is constant along the length of the hull. 

The pitch moment is obtained by multiplying the vertical force, derived for heave 

excitation, by the lever distance from the centerline so the inertia moment on these hulls 

will be: 

L

koh
2

m

2

P
1ip

koh
2

m

2

P2

LS

2

LS1ip

S
3

pb
)t)3/Pb(kcos(He

2
C

4

D
MV

xdy)tkxcos(He
2

C
4

D
MV

























 

Also for drag vertical pitch moment on hulls 
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    So total heave pitching moment on hull will be  

 
321321 dpdpdpipipipp MVMVMVMVMVMVMV                                (3.321) 

For calculating vertical pitch moment on columns, the exposed base of the corner 

columns of the triangular TLP experience a hydrostatic pressure which has no 

contribution to the pitch moment, when the integration is taken to the still waterline. 

However, there is a dynamic pressure variation due to the passage of the waves whose 

net contribution is non zero. The associated pitching moment arising from this is given 

by Eqn. (3.172).
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                                                                                   (3.322) 

So total heave pitching moment on columns will be 

 654 cccc MVMVMVMV                                                                                (3.323) 

So total heave pitching moment on TLP will be 

 CP MVMVMV                                                                                                (3.324) 

So total pitching moment on TLP will be  

 MHMVF 51                                                                                                    (3.325) 
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3.4 Solution of the Equation of Motion in the Time Domain 

 

Wave loading constitutes the primary loading on offshore structures. 

The equations of motion of these structures are coupled and nonlinear as following 

)}tt(F{)}tt(x]{k[)}tt(x]{c[)}tt(x]{m[ o   
               (3.326) 

The right hand side of Eqn.  (3.326) is nonlinearly coupled, because of the presence 

of structural displacement, velocity and acceleration. 

Therefore, the force vector should be updated each time step to account for the 

change in the tether tension. To achieve this response variation a time domain analysis is 

carried out for this purpose.  Newmark's    time integration procedure is used in a step 

wise manner.  

The velocity and displacement at time (t+Δt) can be expressed as  
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The parameters   and   define the variation of acceleration  
x  over time step t     

and determine the stability and accuracy characteristics of the method. Typical selection 

for    is  
2

1
and  

4

1

6

1
    is satisfactory from all points of view, including accuracy. 

The two special cases of Newmark's method that are commonly used are: 

1) Average acceleration method in which the value of    is
2

1
 , 

4

1
 where, this 

method is unconditionally stable. 

2) Linear acceleration method in which the value of    is
2

1
, 

6

1
 where, this 

method is conditionally stable. The method of average acceleration will be used 

in this study.  

The procedure of this method is summarized as solving Eqn. (3.328) for )( ttx 
 

in terms of )( ttx  and then substituting for )( ttx 
 into Eqn. (3.327) we obtain 

equations for  )( ttx 
 and )( ttx 

, each in terms of unknown )( ttx  only. These 

two relations for )( ttx 
 and )( ttx 

 are substituted into Eqn. (3.326) to solve for 

(3.327) 

(3.328) 
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)( ttx  after which, using Eqn. (3.327) and Eqn. (3.328), )( ttx   and  )( ttx    

can also be calculated at each step. The following values are updated 

a) The stiffness coefficients which varies with tether tension, 

b) The added mass which varies with sea surface fluctuations, 

c) The evaluation of wave forces at the instantaneous position of the displaced 

structure, 

d) The surge induced heave response.  
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Chapter 4 

CASE STUDY 

 

4.1 Introduction 

 

This chapter discusses the responses of the square and triangular TLPs due to a 

unidirectional wave in the surge direction. Main response parameters are shown as 

follows 

1) Surge, heave and pitch responses of square TLP due to a unidirectional wave in 

the surge direction. 

2) The change in tension in tether for square tension leg platform subjected to surge 

hydrodynamic force for different wave heights and wave periods. 

3) The surge, heave and pitch responses of a triangular TLP due to a unidirectional 

wave in surge direction. 

4) The change in tension in tether for triangular tension leg platform subjected to 

surge hydrodynamic force for different wave heights and wave periods. 

 

In this numerical study the two test models are the same in the sense that they have 

the same weight and total tension force and the same draft length and overall dimensions. 

However, different columns and pontoon diameters were estimated to fix the same draft 

length as following 

 

                                  (4.1) 

                                   (4.2) 

 

assume;   

                                                                                                                        (4.3) 

where; the weight of the platform and the total tension force in tethers will be the 

same for square and triangle TLPs. So total buoyancy force (FB) is the same for both, 

also both have the same length. So (S) is the same for both platforms. Also when we 
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design TLP, we assume that columns diameter is twice the pontoon diameter in both of 

square and triangle TLP so that when we put this into considersion we find that 

 

                       (4.4) 

                       (4.5) 

                       (4.6) 

 

The forgoing model properties are different than those of Chandrasekaran and Jain, 

2002a; 2002b where they assumed that both models have the same weight and dimension 

which is questionable. 

 

Table 4.1: Geometric properties of the square TLP and load data 
 

 

Water properties 
 

Platform properties 

Gravity acceleration 

(m/sec2) 
9.81 Platform weight (KN),W 280000 

Center of gravity above 

the sea level (m), HC 

6.03 

Water weight density 

(kN/m3) 
10.06 Platform length (m), 2a 66.22 

Tether stiffness 

(KN/m),γ 
80000 

Inertia coefficient, Cm 2 Platform width (m), 2b 66.22 Tether length (m), L 569 

Drag coefficient, Cd 1 
Platform radius of gyration 

in x-directions (m), rx 

32.1 

Platform radius of 

gyration in y-directions 

(m), ry 

32.1 

Current velocity 

(m/sec),Uc 

0 
Platform radius of gyration 

in z-directions (m), rz 
33 Water depth (m),d 600 

Wave period (sec), T 

8, 10, 

12.5, 

and 15 

Tether total force (KN),Tt 160000 
Diameter of pontoon 

(m), DP 

9.03 

Wave height (m), H 

8, 10 

and 12 

Diameter of 

columns (m), Dc 
18.06 

Draft(m),Dr 31 

Damping ratio, ζ 5% 
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Table 4.2: Geometric properties of the triangular TLP and load data 
 

 

Water properties 
 

Platform properties 

Gravity acceleration 

(m/sec2) 
9.81 Platform weight (KN),W 280000 

Center of gravity above 

the sea level (m), HC 

6.03 

Water weight density 

(kN/m3) 
10.06 Platform length (m), Pl 66.22 

Tether stiffness 

(KN/m),γ 
80000 

Inertia coefficient, Cm 2   Tether length (m), L 569 

Drag coefficient, Cd 1 
Platform radius of gyration 

in x-directions (m), rx 

32.1 

Platform radius of 

gyration in y-directions 

(m), ry 

32.1 

Current velocity 

(m/sec),Uc 

0 
Platform radius of gyration 

in z-directions (m), rz 
33 Water depth (m),d 600 

Wave period (sec), T 

8,10, 

12.5 

and 15 

Tether total force (KN),Tt 160000 
Diameter of pontoon 

(m), DP 

11 

Wave height (m), H 

8, 10 

and 12 

Diameter of  

columns (m), Dc 
20 

Draft(m),Dr 31 

Damping ratio, ζ 5% 

 

 

Table 4.3: Calculated natural structural periods for different analysis cases (in seconds) for the four-legged 

tension leg platforms 

 

Analysis Case 
DOF 

Surge Sway Heave Roll Pitch Yaw 

Coupled 97.099 97.099 2.218 3.126 3.126 86.047 

Uncoupled 97.067 97.067 2.218 3.125 3.125 86.047 

 

Table 4.4: Calculated natural structural periods for different analysis cases (in seconds) for the three-legged 

tension leg platforms 

 

Analysis Case 
DOF 

Surge Sway Heave Roll Pitch Yaw 

Coupled 97.2453 97.2549 2.4913 2.9978 3.0521 62.7296 

Uncoupled 97.2057 97.2057 2.5262 3.3773 3.3893 62.9697 
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Figure 4.1: Layout of the studied square TLP case. 
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Figure 4.2: Layout of the studied Triangular TLP case. 
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4.2 Discussions 

 

A numerical scheme was developed using MATLAB software where solution 

based on Newmark's beta method was obtained. A major concern was about the effect of 

the coupling of degrees of freedom and about its role in influencing response behaviors. 

Thus, numerical studies for evaluating the coupled and uncoupled responses of the 

square and triangular TLP under regular waves have been carried out. Coupling of 

various degrees-of-freedom was taken into consideration by considering the off-diagonal 

terms in stiffness matrix [K]. On the other hand, these off-diagonal terms were neglected 

to study the uncoupling effect. Wave forces were taken to be acting in the direction of 

surge degree-of-freedom. The geometric properties of the square and triangular TLP are 

shown in Figures 4.1 and 4.2 respectively.  Moreover, the geometric and hydrodynamic 

data considered for force evaluation are given in Table 4.1 and table 4.2, respectively 

(Jain, A. K., 1990). 

Tables 4.3 and 4.4 show the coupled and the uncoupled natural time periods of 

square TLP and triangular TLP, respectively. It is seen that coupling has insignificant 

effect on natural time periods. It is also observed that TLPs have very long period of 

vibration associated with motions in the horizontal plane (say 60 to 100 seconds).  Since 

typical wave spectral peaks are between 6 to 15 seconds, resonant response in these 

degrees of freedom is unlikely to occur. 

The natural periods in vertical plane in heave, roll and pitch are observed to be in 

the range of 2 to 4 seconds which is consistent with typical TLP's. While this range is 

below the periods of typical storm waves, everyday waves do have some energy in this 

range (the lowest wave period for most geographical locations is about 3 seconds).  Thus, 

wave–excited vibrations can cause high-cycle fatigue of tethers and eventually instability 

of the platform. One alternative to this problem is to increase the moored stiffness as to 

further lower the natural periods in heave, roll and pitch movement. The other alternative 

is to install damping devices in the tethers to mitigate vertical motion.  

Time histories of the coupled and the uncoupled responses are shown in Figures. 

4.3 to 4.13.  Before going into detailed discussion for each response it is clear from the 
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figures that for squared TLP, the coupling has no effect on response in the surge and 

heave directions where, it has negligible effect on pitch direction. On the other hand, for 

triangular TLP, while coupling has a non significant effect on the surge, the heave, and 

tether tension force, it has a significant effect on the pitch response in which ignoring the 

coupling effect will lead to overestimation of the pitch response. 

 

4.2.1 Response for Square TLP 

4.2.1.1 Surge Response 

The time histories of the surge responses for the square TLP are shown in Figure 

4.3. It is observed that, for a specific wave period, the amplitude of oscillations increases 

as the wave height increases. Moreover, for short wave periods (up to 10 sec), the system 

responds in small amplitude oscillations about a displaced position that is inversely 

proportional to the wave period and directly proportional to wave height. On the other 

hand, for relatively long wave period (12.5 or 15 sec.), the system tends to respond in 

high oscillations amplitude about its original position.  The amplitude of oscillations 

increases with the increase in the wave period, which is expected because as the wave 

period increases, it becomes closer to the surge period of vibration (about 97 sec.). 

Moreover, the effect of wave height becomes more pronounced for shorter wave periods.  

In all cases, the surge response seems to have periodic oscillations that have the same 

exciting wave period. Finally, the transient state takes about 40-80 seconds where the 

stationary state begins. 

 

4.2.1.2 Heave Response 

The time histories of the coupled and the uncoupled heave responses for the square 

TLP are shown in Figure 4.4. As expected, the response in the heave direction has very 

small values compared to that of the surge direction. This is attributed to the relatively 

high stiffness of the tethers in this direction together with the fact that the excitation is 

indirect in this case. Moreover, the heave response is directly proportional to the wave 

period and to a less extent to wave height. Also, the transient state takes about 10 
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seconds where the stationary state begins and the motion is almost periodic. The heave 

response appears to have a mean value of nearly zero.  

 

4.2.1.3 Pitch Response 

The time histories of the coupled and the uncoupled pitch responses for squared 

TLP are shown in Figure 4.5. It is clear that as the wave period increases the response 

becomes closer to being periodic in nature. For short wave periods (less than 10 sec.), a 

higher mode contribution to the response seems to take place. For long wave periods 

(12.5 and 15 sec.), the higher mode contribution vanishes after one or two cycles and we 

have a one period response (wave period) as in the surge and heave cases. Moreover, the 

transient state takes about 20 seconds before the stationary state begins. 

To get an insight into the behavior for the short wave period cases, the response 

spectra for wave height of 8.0 m and wave period of 6, 8, and 10 sec was obtained and 

the results are shown in Figure 4.6. Clearly there are three distinct peaks. These are the 

exciting wave period, a period doubling case in which the spectra have peaks at half the 

exciting wave periods, and a third peak that is at about one third of the exciting wave 

period. This particular peak may indicate contribution of the pitch mode of vibration 

(about 3.1 sec.). 

 

4.2.1.4 Tether Tension Force Response 

The time histories of the tether tension force responses for the square TLP are 

shown in Figure 4.7. It is observed that, for a specific wave period, the amplitude of 

forces increases as the wave height increases. Moreover, for short wave periods (less 

than 10 sec), the forces oscillate about a non zero mean value that is inversely 

proportional to the wave period and directly proportional to wave height. On the other 

hand, for relatively long wave period (12.5 or 15 sec.), the forces tend to oscillate about a 

nearly zero value. The effect of wave height is observed to be more pronounced for 

shorter wave periods.   
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Lastly, to gain a conceptual view of the stability and periodicity of the dynamic 

behavior of the structure, the phase plane for wave periods of 10 and 15 sec are plotted in 

Figure 4.8. It is observed that the steady state behavior of the structure is periodic and 

stable. 

4.2.2 Response of Triangular TLP 

4.2.2.1 Surge Response 

The time histories of the surge responses for the triangular TLP are shown in 

Figure 4.9.  It is observed that, for a specific wave period, the amplitude of oscillations 

slightly increases as the wave height increases. Moreover, for short wave periods (up to 

10 sec), the system responds in small amplitude oscillations about a displaced position 

that is inversely proportional to the wave period and directly proportional to wave height. 

On the other hand, for relatively long wave period (12.5 or 15 sec.), the system tends to 

respond in high oscillations amplitude about its original position. The amplitude of 

oscillations increases with the increase in the wave period, which is expected because as 

the wave period increases, it becomes closer to the surge period of vibration (about 97 

sec.). Moreover, the effect of wave height becomes more pronounced for shorter wave 

periods.  In all cases, the surge response seems to have periodic oscillations that have the 

same exciting wave period. Finally, the transient state takes about 140-160 seconds for 

short wave period (6 and 8 sec); whereas it takes about 80 sec for longer wave periods. 

After that the stationary state begins. Finally, it is observed that coupling has 

insignificant effect on the surge response. This is attributed to the fact that the loading is 

symmetrical in this case. 

 

4.2.2.2 Heave Response 

The time histories of the coupled and the uncoupled heave responses for the 

triangular TLP are shown in Figure 4.10. As expected, the response in the heave 

direction has very small values compared to that of the surge direction. This is attributed 

to the relatively high stiffness of the tethers in this direction together with the fact that the 

excitation is indirect in this case. Moreover, the heave response is directly proportional to 
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the wave period and to a less extent to wave height. Also, the transient state takes about 

10 seconds where the stationary state begins and the motion is almost periodic. 

Contribution from heave degree of freedom seems to take place. Finally, coupling seems 

to have a minor effect on the response of the TLP. 

 

4.2.2.3 Pitch Response 

The time histories of the coupled and the uncoupled pitch responses for triangular 

TLP are shown in Figure 4.11. It is clear that coupling has a significant effect on the 

pitch response. This is due to the fact that the structure is not symmetrical in this 

particular response where two legs exist at the left hand side while only one leg exists at 

the right hand side. The uncoupled response overestimates the values the pitch response. 

It also observed that as the wave period increases the response becomes closer to 

being periodic in nature. For short wave periods (less than 10 sec.), a higher mode 

contribution to the response appears to take place. For long wave periods (12.5 and 15 

sec.), the higher mode contribution vanishes after one or two cycles and we have a one 

period response (wave period) as in the surge and heave cases. Moreover, the transient 

state takes about 10 seconds before the stationary state begins. Finally, as the wave 

period increases, the pitch response decreases. This behavior is more pronounced in the 

coupled case. 

 

4.2.2.4 Tether Tension Force Response 

The time histories of the tether tension force responses for the triangular TLP are 

shown in Figure 4.12. It is observed that, for a specific wave period, the amplitude of the 

forces increase as the wave height increases. Moreover, for short wave periods (less than 

8 sec), the transient state exhibits high tension forces in the tethers. This force is 

inversely proportional to wave period and directly proportional to wave height. On the 

other hand, for relatively long wave period (12.5 or 15 sec.), the forces become very 

smaller and have a mean value of nearly zero. Moreover, the effect of wave height is 

more pronounced for shorter wave periods.  Finally, the transient state takes about 160 



 

122 

 

seconds for short wave period of 6 sec. it reduces significantly to 60 sec for wave period 

of 8 sec. for longer wave periods the transient state vanishes after less than 20 sec. 

Lastly, to gain a conceptual view of the stability and periodicity of the dynamic 

behavior of the structure, the phase plane for wave periods of 10 and 15 sec are plotted in 

Figure 4.13. It is observed that the steady state behavior of the structure is periodic and 

stable. 
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(a) wave period = 8 sec 
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(b) wave period = 10 sec 
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(c) wave period = 12.5 sec 
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(d) wave period = 15 sec 

 

Figure 4.3. Surge response of square TLP for (a) wave period = 8 sec; (b) wave period = 10 sec;  

(c) wave period = 12.5 sec; (d) wave period = 15 sec. 
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(a) wave period = 8 sec 
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(b) wave period = 10 sec 
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(c) wave period = 12.5 sec 
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(d) wave period = 15 sec 

 

 

Figure 4.4. Heave response of square TLP for (a) wave period = 8 sec; wave period = 10 sec; (c) wave period = 12.5 

sec; (d) wave period = 15 sec. 
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(a) wave period = 8 sec 
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(b) wave period = 10 sec 
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(c) wave period = 12.5 sec 

0 10 20 30 40 50 60 70 80 90 100
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

P
it

ch
 D

is
p

la
ce

m
en

t 
(D

eg
re

e)

Time(Seconds)  
0 10 20 30 40 50 60 70 80 90 100

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

P
it

ch
 D

is
p

la
ce

m
en

t 
(D

eg
re

e)

Time(Seconds)  

(d) wave period = 15 sec 

 

Figure 4.5. Pitch response of square TLP for (a) wave period = 8 sec; (b) wave period = 10 sec; (c) wave 

period = 12.5 sec; (d) wave period = 15 sec.  
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Figure 4.6. Response Spectrum for pitch motion of square TLP for different wave periods (wave height = 8.0m). 
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(a) wave period = 8 sec 
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(b) wave period = 10 sec 

0 20 40 60 80 100 120 140 160 180 200
-1

0

1

2

3

4

5
x 10

4

C
ha

ng
e 

in
 T

et
he

r 
T

en
si

on
  

Fo
rc

e 
(K

N
)

Time(Seconds)                
0 20 40 60 80 100 120 140 160 180 200

-1

0

1

2

3

4

5
x 10

4

C
ha

ng
e 

in
 T

et
he

r 
T

en
si

on
  

Fo
rc

e 
(K

N
)

Time(Seconds)  
(c) wave period = 12.5 sec 
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Figure 4.7.  Tether tension force response of square TLP for (a) wave period = 8 sec; (b) wave period = 10 

sec; (c) wave period = 12.5 sec; (d) wave period = 15 sec. 
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(b) Wave period = 15 sec (a) Wave period = 10 sec 

Figure 4.8. Phase plane for coupled motion of square TLP (a) Wave period = 10 sec; (b) Wave period = 15 sec. 
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(a) wave period = 8 sec 
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(b)wave period = 10 sec 
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(c)wave period = 12.5 sec 
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Figure 4.9. Surge response of triangular TLP for (a) wave period = 8 sec; (b) wave period = 10 sec; (c) wave period 

= 12.5 sec; (d) wave period = 15 sec. 
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Coupled Uncoupled 
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(b) wave period = 8 sec 
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(d)wave period = 12.5 sec 
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Figure 4.10. Heave response of triangular TLP for (b) wave period = 8 sec; (c) wave period = 10 sec; (d) wave 

period = 12.5 sec; (e) wave period = 15 sec. 
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Figure 4.11. Pitch response of triangular TLP for  (b) wave period = 8 sec; (c) wave period = 10 sec; (d) 

wave period = 12.5 sec; (e) wave period = 15 sec. 
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(a) wave period = 8 sec 
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(b) wave period = 10 sec 
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(c) wave period = 12.5 sec 
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(d) wave period = 15 sec 

 

Figure 4.12. Tether tension force response of triangular TLP for (a) wave period = 8 sec; (b) wave period = 10 sec; 

 (c) wave period = 12.5 sec; (d) wave period = 15 sec. 
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Figure 4.13. Phase plane for coupled motion of triangular TLP (a) Wave period = 10 sec; (b) Wave period 

= 15 sec. 
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Chapter 5 

CONCLUSIONS AND RECOMENDITIONS 
 

5.1 Introduction 

 

The present study investigates the dynamic response of square and triangular TLP 

under hydrodynamic forces in the surge direction considering all degrees of freedom of 

the system. A numerical dynamic model for the TLP was written where Morison’s 

equation with water particle kinematics using Airy’s linear wave theory was used. The 

scope of the work was to accurately model the TLP system considering added mass 

coefficients and nonlinearity in the system together with the coupling between various 

degrees of freedom. Results for the time histories for the affected degrees of freedom 

have been presented.  

The TLP can be modeled as a rigid body with six degrees of freedom, which 

can be conveniently divided into two categories: those controlled by the stiffness of 

tethers, and those controlled by the buoyancy. The former category includes motion 

in the vertical plane and consists of heave, roll and pitch; whereas the latter 

comprises the horizontal motions of surge, sway and yaw. The natural periods of 

motion in the horizontal plane are high, whereas in the vertical plane the periods are 

low. Generally, the surge motion is predominantly high for head seas due to the 

combined actions of wind, waves and currents. However, due to coupling among 

various degrees of freedom and relatively low damping of hydrodynamic origin in 

the vertical plane motion, a complete analysis of a six degree-of-freedom system 

subjected to wind, waves and currents is desirable. 
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5.2 Conclusion 

 

Based on the results shown in this thesis, the following conclusions can be drawn: 

 

a) For Square TLP 

 

  Coupling between various degrees of freedom has no effect on the surge or the 

heave responses, and has an insignificant effect on the pitch response. 

 TLP's have very long period of vibration (80 to 100 seconds) associated with 

motions in the horizontal plane, surge, sway and yaw. Since typical wave spectral 

peaks are between 6 to 15 seconds, resonant response in these degrees of freedom 

is unlikely to occur. 

 For short wave periods (less than 10 sec.), the surge response consists of small 

amplitude oscillations about a displaced position that is inversely proportional to 

the wave period and directly proportional to wave height. On the other hand, for 

relatively long wave period (12.5 or 15 sec.), the system tends to respond in high 

oscillations amplitude about its original position. 

 The heave response is directly proportional to the wave period and to a less extent 

to wave height.   

 For short wave periods (less than 10 sec.), a higher mode contribution to the pitch 

response accompanied by period doubling appears to take place. 

 The phase plane shows that the steady state behavior of the structure is periodic 

and stable. 

 

b) For Triangular TLP 

 

 While coupling has a non significant effect on the surge, the heave, and tether 

tension force, it has a significant effect on the pitch response in which ignoring 

the coupling effect will lead to overestimation of the pitch response. 
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 TLP's have very long period of vibration (60 to 100 seconds) associated with 

motions in the horizontal plane, surge, sway and yaw. Since typical wave spectral 

peaks are between 6 to 15 seconds, resonant response in these degrees of freedom 

is unlikely to occur. 

 For short wave periods (less than 10 sec), the system responds in small amplitude 

oscillations about a displaced position that is inversely proportional to the wave 

period and directly proportional to wave height. On the other hand, for relatively 

long wave period (12.5 or 15 sec.), the system tends to respond in high 

oscillations amplitude about its original position.   

 The heave response is directly proportional to the wave period and to a less extent 

to wave height.  

 For short wave periods (less than 10 sec.), a higher mode contribution to the pitch 

response appears to take place. For long wave periods (12.5 and 15 sec.), the 

higher mode contribution vanishes after one or two cycles and we have a one 

period response (wave period) as in the surge and heave cases. 

 For short wave periods (less than 10 sec), the transient state exhibits high tension 

forces in the tethers. On the other hand, for relatively long wave period (12.5 or 

15 sec.), the forces become very smaller and have a mean value of nearly zero.  

 The phase plane shows that the steady state behavior of the structure is periodic 

and stable. 

 The heave response will be highly underestimated if the coupling effect between 

various degrees-of-freedom is ignored in the analysis of TLP. 

 While the general trend of the square and triangular TLP is similar, the triangular 

TLP response is generally higher than the square TLP.  
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5.3 Recommendations 

It is recommended that a further study should take place considering the following 

1. Irregular wave models. 

2. Higher older wave models. 

3. Oblique wave direction. 

4. TLP with wind turbine to study the behavior of coupled system and its 

stability due to the exerted force from the wind turbine. So we can view 

the feasibility of this coupled system for producing clean rentable energy 

(electricity). 
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APPENDIX A 

 

Newmark's β method 
     

  The algorithm based on Newmark's β method for solving the equation of motion is given 

below: 

First : initial calculations 

Step 1. Calculate the stiffness matrix [K], the damping matrix [C], the mass matrix [M], 

the initial displacement vector {Xo}, and the initial velocity vector {X'o} is given as the 

known input data. 

Step 2. The force vector {F (t)} is calculated.  

Step 3. The initial acceleration vector is then calculated as  

}{}]{[}]{[)}({}]{[   oooooo xxkxctFxm  

Step 3. Select the time step  t  

Step 5. Calculate the method coefficients as 

t
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second : calculations for each time step 

step 6. Calculate the new stiffness matrix ][k  and the new force )}({ ttF   

Step 7. Calculate the difference in force.

 

}{ F  

)}({)}({}{ tFttFF   

Step 8. Calculate }]{[}]{[}{}{ 21
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
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Step 9. Calculate the tangent of stiffness matrix 
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Step 10. Solve to get the difference in displacement as   
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Step 11. Then we can get the difference in velocity }{ x and acceleration }{ x  as 
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Step12. Now we can get the new displacement )}({ ttx  , velocity )}({ ttx  and 

acceleration )}({ ttx  as  

)}({)}({)}({
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txtxttx

txtxttx

txtxttx
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Step13. Repetition for the next time step. Replace  t  by )( tt   and implement steps 6 to 

12 for the next time step  
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                                      APPENDIX B 

 

                                   Program flow chart 
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Calc. the stiffness matrix [K], the damping 
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displacement vector {Xo}, the initial velocity 
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t ,and method coefficients as: 
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Calc. the initial acceleration vector 
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Calc. The tangent of stiffness 
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Get difference in displacement   }{][}{ 1
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 صـــــخـلـالم
 

ى الامواج فى الآونة الاخيرة زاد الاهتمام بدراسة الاستجابة الديناميكية للمنصات البحرية تحت تأثير قو          

ة( التى تحتاج الى لحساب الاستجابة الديناميكية للمنصات البحرية الموجودة فى المياة العميقة )القوى الهيدروديناميكي

 ههذ  .دةخذ العديد من العوامل فى الاعتبار التى لا نستطيع تحديدها بدقة لأن بها الكثير من العوامل الغير محدا

لذا فانه من و .العوامل الغير محددة لها علاقة بخصائص المنشأ وتحديد الأحمال الناتجة عن الموجات العشوائية للبحر

0ستجابة الديناميكيةللإلومات الهامة الشائع عمل نموذج رياضى مبسط للحصول على المع  

هى اساسا عبارة عن منشأ طافى مربوط بعناصر  المنصات ذات الارجل المشدودةمن بين هذه المنصات           

لمنصات وهذا النوع من ا  .الروابط سابقة الاجهاد "مشدودة مسبقا" نتيجة لتاثير قوى الطفو على المنشأ ههذ . رابطة

توى الافقى أثنين فى المس درجات من الحرية ثلات درجات ازاحة فى اتجاة المحاور الثلاث للحركة ) ستة البحرية بة 

أثيرا فى وتعتبر اكثر الازاحات ت  .وواحد فى المستوى الراسى( وثلاث درجات دوران حول المحاور الفراغية الثلاثة

فى  ليةعا يث ان المنصة مشدودة وذات جساءةالاستجابة الديناميكية للمنصة هى الموجودة فى المستوى الافقى ح

بة الافقية وكلما تحركت المنصة أفقيا فإن المرك .  المستوى الراسى ولذا الازاحة فى المستوى الراسى يمكن اهمالها

0لقوى الشد فى الروابط تعمل على منع الحركة وارجاع المنصة إلى وضعها الاصلى  

جل المشدودة ميكية نتيجة لقوى الموجات فى العناصر الإنشائية للمنصة ذات الاران حساب القوى الهيدرودينا           

   0حيوى من الناحية الاقتصادية والآمنة للتصميم

من  للة لكالعديد من الأبحاث قدمت العديد من الطرق والأساليب لحساب القوى والخصائص الدينامكية المنقو          

.مثلثة الشكل فى الأعماق المختلفةالمنصات  البحرية المستطيلة وال  

والمستطيله  فى هذه الرساله تم عمل تحليل ديناميكى لكلا من المنصات البحرية ذات الارجل المشدوده المثلثه           

لطولى.محور االتحت تاثيرقوى فى اتجاه واحد هو اتجاه   

ية وفى فى حالة وجود ارتباط بين درجات الحر رىالدو نتيجة  التغير فى الموجه من حيث الارتفاع والزمن          

0عدم وجوده  

 الخطية الموجية نظريةالولقد تم حساب القوى على العناصر باستخدام معادلة" مورسن" المعدله وباستخدام          

.نىفى المدى الزم  "التكاملية ا" نيومارك بيت "ايرى" وتم حساب الاستجابة الديناميكية باستخدام طريقة  
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رية ذات ومن النتائج لوحظ ان الارتباط بين درجات الحرية المختلفة يوثر بشده على سلوك المنصات البح       

حرية للمنصات الارجل المشدوده كما لوحظ ان الاستجابة الديناميكية للمنصات البحرية المثلثة اكبر من الاستجابة الب

0المستطيله  

ائية والقوى الاخذ فى الاعتبارفى الابحاث المستقبلية  كلا من الموجات العشوفى النهاية نوصى بضرورة             

  .المائله وتاثير تربينة الرياح على المنصات البحرية

 

ة ابواب كالتالى :خمسوقد اشتملت هذة الرسالة على   

 هنواعها المختلفيحتوى هذا الباب على مقدمة عن المنصات البحرية والتعرف على ا :الباب الاول             

الابحاث السابقة.  تم عمل مسح لعديد منوخصوصا المنصات البحرية المشدوده كما   

ظرية أيرى " ن المختلفة وخصوصا الخطية هتايريحتوى على مقدمة عن الموجات البحربة ونظ: الباب الثانى            

ادلة مع "اميكية وكيفية حسابها عن طريقكما نبين القوى الموثره على المنشاءات المعرضة لقوى هيدرودين "

."مورسن  

يله من حيث يحتوى على تفصيل موضح للمنصات البحرية المشدوده سواء المثلثه او المستط: الباب الثالث          

طريقة  "تخدامكيفية حساب الكتلة والجسائة والقوى ومعامل الترخيم وفى النهاية كيفية عمل التحليل الرياضى باس

."رك بيتانيوما  

ج محل الدراسه والنتائج والتعليق عليها.ذيحتوى على النمو : الباب الرابع                    

نتائج والتوصيات الواجب توافرها فى الابحاث المستقبلية.لويحتوى على ا:  الباب الخامس          
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الحكم من مناقشة ونائب رئيس جامعة بنها على تشكيل لجنة  وافق الاستاذ الدكتور /
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 جامعة الزقازيق  "ممتحن خارجى ورئيسا" –أستاذ بقسم الهندسة المدنية         السيد سعد عبد السلامد/ 0أ -1

 "ممتحن خارجى" جامعة الاسكندرية  –أستاذ بقسم الهندسة البحرية           محمد عباس قطبد/  0أ  -2

جامعة بنها  "مشرفا  –المعهد العالى  –بقسم الهندسة المدنية ستاذ مساعد أ  اشرف محمد ابو رياند/ 0م0أ -3

 رئيسيا"
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 لفحص الرسالة المقدمة من المهندس / عمرو رمضان ابراهيم على الجمال 

تكنولوجيا الهندسة المدنية  للحصول على درجة الماجستير فى  

 

 

 

 
  وكيل المعهد  للدراسات العليا                                                                             الدراسات العليا

د / محمد انور راضى 0أ                                                                                                      
 



 

 

 

الديناميكي للمنصات البحرية ذات الارجل  لسلوكا

 المشدودة المعرضة للقوى الهيدروديناميكية
 

 مقدمة من  رسالة

 

 المهندس / عمرو رمضان ابراهيم على الجمال

 جامعة بنها  -إلي المعهد العالي للتكنولوجيا 

 

 كجزء من متطلبات الحصول علي درجة الماجستير 

المدنيةتكنولوجيا الهندسة في   

 

 اعتمدت و أجيزت من السادة الممتحنين

 
 و رئيساً ( خارجيا) ممتحناً                                أ.د./ السيد سعد عبد السلام

 ............................                  جامعة الزقازيق –بقسم الهندسة المدنية أستاذ 

 
 

 ) ممتحناً خارجياً و عضواً (                   قطب                   أ.د./ محمد عباس 

 ............................                    جامعة الإسكندرية     –أستاذ بقسم الهندسة البحرية 

 
 

 اً () مشرفاً و عضو                                                 د/ أشرف محمد أبوريان.م.أ

 .........................             جامعة بنها -بقسم تك الهندسة المدنية بالمعهد العالى للتكنولوجيا أستاذ

 
 

 ) مشرفاً و عضواً (                                                           أيمن أحمد سليمةد/ .م.أ

 .........................                                    طنطا جامعة - الإنشائية بقسم الهندسةستاذ مساعد أ

 
 

 ) رئيس القسم (                                      المدنية اعتمدت من قسم تكنولوجيا الهندسة

 ...................                                                         أحمد حسن عبد الكريم د/.م.أ

 
 

 ) وكيل المعهد للدراسات العليا (             اعتمدت من الدراسات العليا           

 ............................                               محمد انور راضى         أ.د./ 

             

 

 



 

 

 

 

 

 

 

 جامعة بنها

 المعهد العالي للتكنولوجيا
 

 

ي للمنصات البحرية ذات الارجل الديناميك سلوكال

 المشدودة المعرضة للقوى الهيدروديناميكية
 

 رسالة مقدمة من

 

 

 عمرو رمضان ابراهيم على الجمال

 
جامعة بنها –المعهد العالى للتكنولوجيا  –المعيد بقسم الهندسة المدنية   

                                                                           
 

 
 كجزء من 

 متطلبات الحصول علي درجة 

 

 

 الماجستير

 في 

 ةدنيالمتكنولوجيا الهندسة 

 

تحت إشراف

 

د/ أيمن أحمد سليمة0م0أ                               د/ أشرف محمد أبوريان          0م0أ  

الإنشائية بقسم الهندسةستاذ مساعد أ لهندسة المدنيةبقسم ا                               أستاذ مساعد     

 المعهد العالى للتكنولوجيا                                                    كلية الهندسة            

بنها جامعة                                                                          طنطاجامعة    

2011ابريل   

 


